Numerical Algorithms

, Volume 62, Issue 3, pp 355–381 | Cite as

Adapted Falkner-type methods solving oscillatory second-order differential equations

Original Paper

Abstract

The classical Falkner methods (Falkner, Phil Mag S 7:621, 1936) are well-known for solving second-order initial-value problems u′′(t) = f(t, u(t), u′(t)). In this paper, we propose the adapted Falkner-type methods for the systems of oscillatory second-order differential equations u′′(t) + Mu(t) = g(t, u(t)) and make a rigorous error analysis. The error bounds for the global errors on the solution and the derivative are presented. In particular, the error bound for the global error of the solution is shown to be independent of ||M||. We also give a stability analysis and plot the regions of stability for our new methods. Numerical examples are included to show that our new methods are very competitive compared with the reformed Falkner methods in the scientific literature.

Keywords

Adapted Falkner-type method Error analysis Oscillatory second-order differential equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Franco, J.M., Palacian, J.F.: High order adaptive methods of Nyström-Cowell type. J. Comput. Appl. Math. 81, 115–134 (1997)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    López, D.J., Martín, P., Farto, J.M.: Generalization of the Störmer method for perturbed oscillators without explicit firrst derivatives. J. Comput. Appl. Math. 111, 123–132 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Li, J.Y., Wang, B., You, X., Wu, X.Y.: Two-step extended RKN methods for oscillatory systems. Comput. Phys. Commun. 182, 2486–2507 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Falkner, V.M.: A method of numerical solution of differential equations. Phil. Mag. S. 7, 621 (1936)Google Scholar
  6. 6.
    Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin (1966)Google Scholar
  7. 7.
    Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for y″ = f(x, y, y′). J. Comput. Appl. Math. 192, 114–131 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ramos, H., Lorenzo, C.: Review of explicit Falkner methods and its modifications for solving special second-order I.V.P.s. Comput. Phys. Commun. 181, 1833–1841 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Wu, X.Y., You, X., Xia, J.L.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Commun. 180, 2250–2257 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Wu, X.Y., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Vigo-Aguiar, J., Ferrandiz, J.M.: A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Swope, C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76, 637 (1982)CrossRefGoogle Scholar
  13. 13.
    Hayes, L.J.: Galerkin alternating-direction methods for nonrectangular regions using patch approximations. SIAM J. Numer. Anal. 18, 627–643 (1987)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1987)MATHGoogle Scholar
  15. 15.
    Wu, X.Y.: A note on stability of multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems. Appl. Math. Model. (2012). doi:10.1016/j.apm.2012.01.053 Google Scholar
  16. 16.
    Coleman, J.P., Ixaru, L. Gr.: P-stability and exponential-fitting methods for y″ = f(x, y). IMA J. Numer. Anal. 16, 179–199 (1996)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vigo-Aguiar, J., Simos, T.E., Ferrándiz, J.M.: Controlling the error growth in long-term numerical integration of perturbed oscillations in one or more frequencies. Proc. R. Soc. Lond., A 460, 561–567 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Hairer, E., Nøsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd revised edn. Springer, Berlin (1993)MATHGoogle Scholar
  19. 19.
    Tocino, A., Vigo-Aguiar, J.: Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Model. 42, 873–876 (2005)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Wu, X.Y., Wang, B.: Multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Comput. Phys. Commun. 181, 1955–1962 (2010)MATHCrossRefGoogle Scholar
  21. 21.
    Shi, W., Wu, X.Y.: On symplectic and symmetric ARKN methods. Comput. Phys. Commun. 183, 1250–1258 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, B., Wu, X.Y.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A. 376, 1185–1190 (2012)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Wu, X.Y., Wang, B., Xia, J.L.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nystrom methods. BIT Numer. Math. (2012). doi:10.1007/s10543-012-0379-z MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations