Skip to main content
Log in

Trigonometrically fitted block Numerov type method for y′′ = f(x, y, y′)

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A trigonometrically fitted block Numerov type method (TBNM), is proposed for solving y′′ = f(x, y, y′) directly without reducing it to an equivalent first order system. This is achieved by constructing a continuous representation of the trigonometrically fitted Numerov method (CTNM) and using it to generate the well known trigonometrically fitted Numerov method (TNUM) and three new additional methods, which are combined and applied in block form as simultaneous numerical integrators. The stability property of the TBNM is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Ambrosio, R., Ferro, M., Paternoster, B.: Two-step hybrid collocation methods for y′′ = f(x, y). Appl. Math. Lett. 22, 1076–1080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awoyemi, D.O.: A new sixth-order algorithm for general second order ordinary differential equation. Int. J. Comput. Math. 77, 117–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multitep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam (1998)

    Google Scholar 

  4. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods. Wiley, New York (1987)

    MATH  Google Scholar 

  5. Coleman, J.P., Duxbury, S.C.: Mixed collocation methods for y′′ = f(x, y). J. Comput. Appl. Math. 126, 47–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman, J.P., GR. Ixaru, G.: P-stability and exponential-fitting methods for y′′ = f(x, y). IMA J. Numer. Anal. 16, 179–199 (1996)

    Article  MathSciNet  Google Scholar 

  7. Fatunla, S.O.: Block methods for second order IVPs. Int. J. Comput. Math. 41(9), 55–63 (1991)

    Article  MATH  Google Scholar 

  8. Nguyen, H.S., Sidje, R.B., Cong, N.H.: Analysis of trigonometric implicit Runge-Kutta methods. J. Comput. Appl. Math. 198, 187–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Franco, J.M.: Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hairer, E.: Méthodes de Nyström pour l’équation différentielle y′′ = f(x, y). Numer. Math. 25, 283–300 (1977)

    Google Scholar 

  11. Hairer, E., Wanner, G.: A Theory for Nystrom methods. Numer. Math. 25, 383–400 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ixaru, L., Berghe, G.V.: Exponential Fitting. Kluwer, Dordrecht, Netherlands (2004)

    MATH  Google Scholar 

  13. Jator, S.N.: Solving second order initial value problems by a hybrid multistep method without predictors. Appl. Math. Comput. 217, 4036–4046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jator, S.N., Li, J.: A self-starting linear multistep method for a direct solution of the general second order initial value problem. Int. J. Comput. Math. 86(5), 827–836 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jator, S.N.: A sixth order linear multistep method for the direct solution of y′′ = f(x, y, y′). Int. J. Pure Appl. Math. 40, 457–472 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Keiper, J.B., Gear, C.W.: The analysis of generalized backwards difference formula methods applied to Hessenberg form differential-algebraic equations. SIAM J. Numer. Anal. 28, 833–858 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lambert, J.D., Watson, A.: Symmetric multistep method for periodic initial value problem. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. John Wiley, New York (1973)

    MATH  Google Scholar 

  19. Milne, W.E.: Numerical Solution of Differential Equations. John Wiley and Sons (1953)

  20. Onumanyi, P., Sirisena, U.W., Jator, S.N.: Continuous finite difference approximations for solving differential equations. Int. J. Comput. Math. 72, 15–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ozawa, K.: A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method. Japan J. Indust. Appl. Math. 22, 403–427 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ramos, H., Vigo-Aguiar, J.: Variable stepsize Stôrmer-Cowell methods. Math. Comput. Model. 42, 837–846 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosser, J.D.: A Runge-kutta for all seasons. SIAM Rev. 9, 417–452 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shampine, L.F., Watts, H.A.: Block implicit one-step methods. Math. Comput. 23, 731–740 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sommeijer, B.P.: Explicit, high-order Runge-Kutta-Nyström methods for parallel computers. Appl. Numer. Math. 13, 221–240 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stiefel, E., Bettis, D.G.: Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tsitouras, Ch.: Explicit eighth order two-step method with nine stages for integrating oscillatory problems. Int. J. Modern Phys. C 17, 861–876 (2006)

    Article  MATH  Google Scholar 

  29. Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for y′′ = f (x, y, y′). J. Comput. Appl. Math. 192, 114–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vigo-Aguiar, J., Ramos, H.: Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158, 187–211 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel N. Jator.

Additional information

The first author was supported by Austin Peay State University, Clarksville, TN, USA through the Faculty Development Leave, Spring 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jator, S.N., Swindell, S. & French, R. Trigonometrically fitted block Numerov type method for y′′ = f(x, y, y′). Numer Algor 62, 13–26 (2013). https://doi.org/10.1007/s11075-012-9562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9562-1

Keywords

Navigation