Numerical Algorithms

, Volume 59, Issue 3, pp 347–357 | Cite as

A parallel algorithm based on convexity for the computing of Delaunay tessellation

  • Phan Thanh AnEmail author
  • Le Hong Trang
Original Paper


The paper describes a parallel algorithm for computing an n-dimensional Delaunay tessellation using a divide-conquer strategy. Its implementation (using MPI library for C) in the case n = 2, relied on restricted areas to discard non-Delaunay edges, is executed easily on PC clusters. We shows that the convexity is a crucial factor of efficiency of the parallel implementation over the corresponding sequential one.


Geometric computing Parallel method Delaunay tessellation Convex hull Convexity 

Mathematics Subject Classifications (2010)

52B55 65D18 65Y05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akl, S.G., Lyons, K.A.: Parallel Computational Geometry. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  2. 2.
    An, P.T., Trang, L.H.: An efficient convex hull algorithm in 3D based on the method of orienting curves. (to appear in Optimization, 2011)Google Scholar
  3. 3.
    An, P.T.: Method of orienting curves for determining the convex hull of a finite set of points in the plane. Optimization 59(2), 175–179 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    An, P.T., Giang, D.T., Hai, N.N.: Some computational aspects of geodesic convex sets in a simple polygon. Numer. Funct. Anal. Optim. 31(3), 221–231 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    An, P.T.: A modification of Graham’s algorithm for determining the convex hull of a finite planar set. Ann. Math. Inf. 34, 269–274 (2007)Google Scholar
  6. 6.
    Atallah, M.J.: Parallel computational geometry. In: Zomaya, A.Y. (ed.) Parallel and Distributed Computing Handbook. McGraw-Hill, New York (1995)Google Scholar
  7. 7.
    Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted voronoi diagram in the plane. Pattern Recogn. 17(2), 251–257 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Blelloch, G.E., Miller, G.L., Hardwick, J.C., Talmor, D.: Design and implementation of a practical parallel Delaunay algorithm. Algorithmica 24(3&4), 243–269 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Brown, K.Q.: Voronoi diagrams from convex hulls. Inf. Process. Lett. 9(5), 223–228 (1979)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chen, M.-B., Chuang, T.-R., Wu, J.-J.: Parallel divide-and-conquer scheme for 2D Delaunay triangulation. Concurrency and Computation: Practice and Experience 18, 1595–1612 (2006)CrossRefGoogle Scholar
  11. 11.
    Edelsbrunner, H., Seide, R.: Voronoi diagrams and arrangements. Discrete Comput. Geom. 1(1), 25–44 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    JáJá, J.: Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)zbMATHGoogle Scholar
  13. 13.
    Kolingerová, I., Kohout, J.: Optimistic parallel Delaunay triangulation. Vis. Comput. 18(8), 511–529 (2002)CrossRefGoogle Scholar
  14. 14.
    Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 1st edn. Wiley, New York (1992)zbMATHGoogle Scholar
  15. 15.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  16. 16.
    Preparata, F.P., Shamos, M.I.: Computational Geometry—An Introduction, 2nd edn. Springer, New York (1988)Google Scholar
  17. 17.
    Valentine, F.A.: Convex Sets. McGraw-Hill, New York (1964)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Center for Mathematics and its Applications (CEMAT)Instituto Superior TécnicoLisboaPortugal
  2. 2.Institute of MathematicsHanoiVietnam
  3. 3.Faculty of Informatics and Information TechnologyVinh UniversityVinh TownVietnam

Personalised recommendations