Skip to main content
Log in

The numerical method of successive interpolations for Fredholm functional integral equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new numerical method for Fredholm functional integral equations is proposed. The method combines the fixed point technique with numerical integration and cubic spline interpolation. The convergence and the numerical stability of the method are proved and tested on some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasbandy, S.: Application of He’s homotopy perturbation method to functional integral equations. Chaos, Solitons Fractals 31, 1243–1247 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abbasbandy, S., Shivanian, E.: A new analytical technique to solve Fredholm integral equations. Numer. Algorithms 56(1), 27–43 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abbasbandy, S.: Numerical solutions of the integral equations: homotopy perturbation method and Adomian decomposition method. Appl. Math. Comput. 173, 493–500 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agarwall, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  5. Allouch, C., Sablonniere, P., Sbibih, D.: Solving Fredholm integral equations by approximating kernels by spline quasi-interpolants. Numer. Algorithms (2010). doi:10.1007/s11075-010-9396-7

    MATH  Google Scholar 

  6. Anselone, P. (ed.): Nonlinear Integral Equations. University of Wisconsin, Madison (1964)

    Google Scholar 

  7. Argyros, I.K.: Quadratic equations and applications to Chandrasekhar’s and related equations. Bull. Aust. Math. Soc. 32, 275–292 (1985)

    Article  MATH  Google Scholar 

  8. Atkinson, K.: A survey of numerical methods for solving nonlinear integral equations. J. Integral Equ. Appl. 4, 15–46 (1992)

    Article  MATH  Google Scholar 

  9. Atkinson, K., Han, W.: Theoretical Numerical Analysis. A Functional Analysis Framework, Texts in Applied Mathematics 39. Springer, New York (2007)

    Google Scholar 

  10. Atkinson, K.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  11. Atkinson, K., Graham, I., Sloan, I.: Piecewise continuous collocation for integral equations. SIAM J. Numer. Anal. 20, 172–186 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Atkinson, K., Potra, F.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Atkinson, K., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13, 195–213 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Atkinson, K., Potra F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Atkinson, K.: Iterative variants of the Nyström method for the numerical solution of integral equations. Numer. Math. 22, 17–31 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Atkinson, K.: The numerical evaluation of fixed points for completely continuous operators. SIAM J. Numer. Anal. 10, 799–807 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Babolian, E., Abbasbandy, S., Fattahzadeh, F.: A numerical method for solving a class of functional and two dimensional integral equations. Appl. Math. Comput. 198, 35–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Babolian, E., Biazar, J., Vahidi, A.R.: The decomposition method applied to systems of Fredholm integral equations of the second kind. Appl. Math. Comput. 148, 443–452 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Banaś, J., Sadarangani, K.: Solutions of some functional-integral equations in Banach algebra. Math. Comput. Model. 38, 245–250 (2003)

    Article  MATH  Google Scholar 

  20. Bica, A.M.: New numerical method for Hammerstein integral equations with modified argument. An. Univ. Oradea, Fasc. Mat. 17, 33–44 (2010)

    MATH  MathSciNet  Google Scholar 

  21. de Boor, C.: A Practical Guide to Splines. Springer, New York (2001)

    MATH  Google Scholar 

  22. Borzabadi, A.H., Kamyad, A.V., Mehne, H.H.: A different approach for solving the nonlinear Fredholm integral equations of the second kind. Appl. Math. Comput. 173, 724–735 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Borzabadi, A.H., Fard, O.S.: Numerical scheme for a class of nonlinear Fredholm integral equations of the second kind. J. Comput. Appl. Math. 232, 449–454 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Brutman, L.: An application of the generalized alternating polynomials to the numerical solution of Fredholm integral equations. Numer. Algorithms 5, 437–442 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Cerone, P., Dragomir, S.: Trapezoidal and midpoint-type rules from inequalities point of view. In: Anastassiou, G.A. (ed.) Handbook of Analytic Computational Methods in Applied Mathematics. Chapman & Hall/CRC Press, Boca Raton (2000)

    Google Scholar 

  26. Han, G.Q.: Extrapolation of a discrete collocation-type method of Hammerstein equations. J. Comput. Applied Math. 61, 73–86 (1995)

    Article  MATH  Google Scholar 

  27. Han, G.Q., Zhang, L.: Asymptotic error expansion of a collocation-type method for Hammerstein equations. Appl. Math. Comput. 72, 1–19 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Han, G.Q.: Asymptotic expansion for the Nystrom method for nonlinear Fredholm integral equations of the second kind. BIT Numer. Math. 34, 254–262 (1994)

    Article  MATH  Google Scholar 

  29. de Hoog, F., Weiss, R.: Asymptotic expansions for product integration. Math. Comput. 27, 295–306 (1973)

    Article  MATH  Google Scholar 

  30. Hübner, O.: The Newton method for solving the Theodorsen integral equation. J. Comput. Appl. Math. 14, 19–30 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ibrahim, I.A.: On the existence of solutions of functional integral equation of Urysohn type. Comput. Math. Appl. 57, 1609–1614 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jankowski, T.: Positive solutions for fourth-order differential equations with deviating arguments and integral boundary conditions. Nonlinear Anal. 73, 1289–1299 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kantorovich, L., Akilov, G.: Functional Analysis in Normed Spaces. Pergamon, London (1964)

    MATH  Google Scholar 

  34. Kaneko, H., Noren, R.D., Padilla, P.A.: Superconvergence of the iterated collocation methods for Hammerstein equations. J. Comput. Appl. Math. 80, 335–349 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Maleknejad, K., Almasieh, H., Roodaki, M.: Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations. Commun. Nonlinear Sci. Numer. Simul. 15, 3293–3298 (2010)

    Article  MathSciNet  Google Scholar 

  36. Kelley, C.T.: Approximation of solutions of some quadratic integral equations in transport theory. J. Integral Equ. 4, 221–237 (1982)

    MATH  MathSciNet  Google Scholar 

  37. Kelley, C.T., Northrup, J.: A pointwise quasi-Newton method for integral equations. SIAM J. Numer. Anal. 25, 1138–1155 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kelley, C.T., Sachs, E.: Broyden’s method for approximate solution of nonlinear integral equations. J. Integral Equ. 9, 25–43 (1985)

    MATH  MathSciNet  Google Scholar 

  39. Kelley, C.T.: A fast two-grid method for matrix H-equations. Trans. Theory Stat. Phys. 18, 185–204 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  40. Krasnoselskii, M.: Topological Methods in the Theory of Nonlinear Integral Equations. Macmillan, New York (1964)

    Google Scholar 

  41. Kress, R.: Linear Integral Equations. Springer, Berlin (1989)

    MATH  Google Scholar 

  42. Kumar, S., Sloan, I.: A new collocation-type method for Hammerstein equations. Math. Comput. 48, 585–593 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kumar, S.: A discrete collocation-type method for Hammerstein equations. SIAM J. Numer. Anal. 25, 328–341 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  44. Maleknejad, K., Mollapourasl, R., Nouri, K.: Study on existence of solutions for some nonlinear functional-integral equations. Nonlinear Anal. 69, 2582–2588 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Maleknejad, K., Nouri, K., Mollapourasl, R.: Investigation of the existence of solutions for some nonlinear functional–integral equations. Nonlinear Anal. 71, 1575–1578 (2009)

    Article  MathSciNet  Google Scholar 

  46. Maleknejad, K., Karami, M.: Numerical solution of non-linear Fredholm integral equations by using multiwavelets in the Petrov–Galerkin method. Appl. Math. Comput. 168, 102–110 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Maleknejad, K., Nouri, K., Sahlan, M.N.: Convergence of approximate solution of nonlinear Fredholm–Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 15, 1432–1443 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mastroiani, G., Monegato, G.: Some new applications of truncated Gauss–Laguerre quadrature formulas. Numer. Algorithms 49, 283–297 (2008)

    Article  MathSciNet  Google Scholar 

  49. Mennicken, R., Wagenfuhrer, E.: Numerische Mathematik, vol. 2. Vieweg, Braunschweig/ Wiesbaden (1977)

  50. Micula, G., Micula, S.: Handbook of Splines. Mathematics and its Applications, vol. 462, Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  51. Milne-Thomson, L.: Theoretical Hydrodynamics, 5th edn. Macmillan, New York (1968)

    MATH  Google Scholar 

  52. Plato, R.: Concise Numerical Mathematics, Graduate Studies in Mathematics, vol. 57. AMS Providence, Rhode Island (2003)

    Google Scholar 

  53. Petryshyn, W.: Projection methods in nonlinear numerical functional analysis. J. Math. Mech. 17, 353–372 (1967)

    MATH  MathSciNet  Google Scholar 

  54. Rashed, M.T.: Numerical solution of functional differential, integral and integro-differential equations. Appl. Math. Comput. 156, 485–492 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  55. Rashed, M.T.: Numerical solution of functional integral equations. Appl. Math. Comput. 156, 507–512 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  56. O’Regan, D., Meehan, M.: Existence Theory for Nonlinear Integral and Integrodifferential Equations. Kluwer Academic, Dordrecht (1998)

    Book  MATH  Google Scholar 

  57. Shimasaki, M., Kiyono, T.: Numerical solution of integral equations by Chebyshev series. Numer. Math. 21, 373–380 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  58. Sommariva, A.: A fast Nyström-Broyden solver by Chebyshev compression. Numer. Algorithms 38, 47–60 (2005)

    MATH  MathSciNet  Google Scholar 

  59. Stibbs, D., Weir, R.: On the H-function for isotropic scattering. Mon. Not. R. Astron. Soc. 119, 512–525 (1959)

    MATH  MathSciNet  Google Scholar 

  60. Yao, Q.: Positive solutions for eigenvalue problems of fourth order elastic beam equations. Appl. Math. Lett. 17, 237–243 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  61. Yao, Q.: Solvability of a fourth-order beam equation with all-order derivatives. Southeast Asian Bull. Math. 32, 563–571 (2008)

    MATH  MathSciNet  Google Scholar 

  62. Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. I: Fixed Points Theorems. Springer, Berlin (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Mihai Bica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bica, A.M. The numerical method of successive interpolations for Fredholm functional integral equations. Numer Algor 58, 351–377 (2011). https://doi.org/10.1007/s11075-011-9459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9459-4

Keywords

AMS 2000 Subject Classifications

Navigation