Skip to main content
Log in

A new analytical technique to solve Fredholm’s integral equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper shows that the homotopy analysis method, the well-known method to solve ODEs and PDEs, can be applied as well as to solve linear and nonlinear integral equations with high accuracy. Comparison of the present method with Adomian decomposition method (ADM), which is well-known in solving integral equations, reveals that the ADM is only special case of the present method. Also, some linear and nonlinear examples are presented to show high efficiency and illustrate the steps of the problem resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kythe, P.K., Puri, P.: Computational Methods of Linear Integral Equations. Springer, New York (2002)

    Google Scholar 

  2. Baker, C.T.H.: The Numerical Treatment of Integral Equations. Clarendon, Oxford (1969)

    Google Scholar 

  3. Huang, S.C., Shaw, R.P.: The Trefftz method as an integral equation. Adv. Eng. Softw. 24, 57–63 (1995)

    Article  MATH  Google Scholar 

  4. Abdou, M.A.: On the solution of linear and nonlinear integral equation. Appl. Math. Comput. 146, 857–871 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Liang, D., Zhang, B.: Numerical analysis of graded mesh methods for a class of second kind integral equations on real line. J. Math. Anal. Appl. 294, 482–502 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wazwaz, A.M.: A First Course in Integral Equations. World Scientific, New Jersey (1997)

    MATH  Google Scholar 

  7. Babolian, E., Biazar, J., Vahidi, A.R.: The decomposition method applied to systems of Fredholm integral equations of the second kind. Appl. Math. Comput. 148, 443–452 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Babolian, E., Davari, A.: Numerical implementation of Adomian decomposition method. Appl. Math. Comput. 153, 301–305 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Abbasbandy, S.: Numerical solutions of the integral equations: homotopy perturbation method and Adomian decomposition method. Appl. Math. Comput. 173, 493–500 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Vahidi, A.R., Babolian, E., Asadi Cordshooli, G.H., Azimzadeh, Z.: Numerical solution of Fredholm integro-differential equation by Adomian’s decomposition method. Int. J. Math. Analysis 336, 1769–1773 (2009)

    MathSciNet  Google Scholar 

  11. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC, Boca Raton (2003)

    Book  Google Scholar 

  12. Hayat, T., Javed, T., Sajid, M.: Analytic solution for rotating flow and heat transfer analysis of a third-grade fluid. Acta Mech. 191, 219–229 (2007)

    Article  MATH  Google Scholar 

  13. Hayat, T., Khan, M., Sajid, M., Asghar, S.: Rotating flow of a third grade fluid in a porous space with hall current. Nonlinear Dyn. 49, 83–91 (2007)

    Article  MATH  Google Scholar 

  14. Hayat, T., Abbas, Z., Sajid, M., Asghar, S.: The influence of thermal radiation on MHD flow of a second grade fluid. Int. J. Heat Mass Transfer 50, 931–941 (2007)

    Article  MATH  Google Scholar 

  15. Sajid, M., Siddiqui, A., Hayat, T.: Wire coating analysis using MHD Oldroyd 8-constant fluid. Int. J. Eng. Sci. 45, 381–392 (2007)

    Article  Google Scholar 

  16. Sajid, M., Hayat, T., Asghar, S.: Non-similar solution for the axisymmetric flow of a third-grade fluid over radially stretching sheet. Acta Mech. 189, 193–205 (2007)

    Article  MATH  Google Scholar 

  17. Abbasbandy, S.: Soliton solutions for the 5th-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 51, 83–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Abbasbandy, S.: The application of the homotopy analysis method to solve a generalized Hirota–Satsuma coupled KdV equation. Phys. Lett., A. 361, 478–483 (2007)

    Article  MATH  Google Scholar 

  19. Abbasbandy, S.: The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett., A. 360, 109–113 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Abbasbandy, S.: Homotopy analysis method for heat radiation equations. Int. Commun. Heat. Mass. Transf. 34, 380–387 (2007)

    Article  MathSciNet  Google Scholar 

  21. Zhu, S.P.: An exact and explicit solution for the valuation of American put options. Quantitative Finance 6, 229-242 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhu, S.P.: A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield. Anziam. J. 47, 477-494 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu, Y., Cheung, K.F.: Explicit solution to the exact Riemann problems and application in nonlinear shallow water equations. Int. J. Numer. Methods Fluids 57(11), 1649–1668 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yamashita, M., Yabushita, K., Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A 40, 8403–8416 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bouremel, Y.: Explicit series solution for the Glauert-jet problem by means of the homotopy analysis method. Commun. Nonlinear. Sci. Numer. Simulat. 12(5), 714–724 (2007)

    Article  MATH  Google Scholar 

  26. Tao, L., Song, H., Chakrabarti, S.: Nonlinear progressive waves in water of finite depth—an analytic approximation. Clastal. Eng. 54, 825–834 (2007)

    Article  Google Scholar 

  27. Song, H., Tao, L.: Homotopy analysis of 1D unsteady, nonlinear groundwater flow through porous media. J. Coast. Res. 50, 292–295 (2007)

    Google Scholar 

  28. Molabahrami, A., Khani, F.: The homotopy analysis method to solve the Burgers–Huxley equation. Nonlinear Anal. B.: Real World Appl. 10, 589–600 (2009). doi:10.1016/j.nonrwa.2007.10.014

    Article  MATH  MathSciNet  Google Scholar 

  29. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solutions of time-dependent Emden–Fowler type equations by homotopy analysis method. Phys. Lett., A 371, 72–82 (2007)

    Article  Google Scholar 

  30. Wang, Z., Zou, L., Zhang, H.: Applying homotopy analysis method for solving differential-difference equation. Phys. Lett., A 369, 77–84 (2007)

    Article  Google Scholar 

  31. Mustafa Inc.: On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method. Phys. Lett., A 365, 412–415 (2007)

    Google Scholar 

  32. Cai, W.H.: Nonlinear dynamics of thermal-hydraulic networks. PhD thesis, University of Notre Dame (2006)

  33. Abbasbandy, S., Magyari, E., Shivanian, E.: The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Commun. Nonlinear Sci. Numer. Simulat. 14, 3530–3536 (2009)

    Article  MathSciNet  Google Scholar 

  34. Cherruault, Y.: Convergence of Adomian’s method. Kybernetes 18(2), 31–38 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Abbasbandy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasbandy, S., Shivanian, E. A new analytical technique to solve Fredholm’s integral equations. Numer Algor 56, 27–43 (2011). https://doi.org/10.1007/s11075-010-9372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9372-2

Keywords

Navigation