Skip to main content

Two-step fourth order methods for linear ODEs of the second order

Abstract

A family of two step difference schemes of the fourth order has been developed for linear ODEs of the second order. Stability properties for such schemes are discussed and results of numerical tests are given. It is shown how the proposed technique can be extended to non-linear ODEs of second order.

This is a preview of subscription content, access via your institution.

References

  1. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations 1, Nonstiff Problems, 528 pp. Springer, Berlin (1987)

    Google Scholar 

  2. Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting, 308 pp. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  3. Van Daele, M., Vanden Berghe, G.: P-stable Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algor. 44, 115–131 (2007)

    Article  MATH  Google Scholar 

  4. Tikhonov, A.N., Arsenin, V.Ya.: Methods of Solution of Ill-Posed Problem. Nauka, Moscow (1986) (in Russian)

    Google Scholar 

  5. Bulatov, M.V.: Construction on a one-stage L-stable second order method. Differ. Equ. 39, 593–595 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bulatov, M.V.: On construction of nonclassic difference schems for ordinary differential equations. Differ. Equ. 44, 546–557 (2008)

    MathSciNet  Google Scholar 

  7. Bakhvalov, N.S.: Numerical Methods. Nauka, Moscow (1975) (in Russian)

    Google Scholar 

  8. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stiefel, T.E., Bettis, D.G.: Stabilization of Cowell’s method. Numer. Methods 13, 154–175 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  10. Van Daele, M., Vanden Berghe, G.: P-stable exponentially-fitting Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algor. 46, 333–350, 115–131 (2007)

    Article  MATH  Google Scholar 

  11. Zhao, D., Wang, Z., Dai, Y.: Importance of the first-order derivative formula in the Obrechkoff methods. Comput. Phys. Commun. 167, 65–75 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Vanden Berghe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bulatov, M.V., Vanden Berghe, G. Two-step fourth order methods for linear ODEs of the second order. Numer Algor 51, 449–460 (2009). https://doi.org/10.1007/s11075-008-9249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9249-9

Keywords

  • Difference schemes
  • Numerov method
  • P-stability