Skip to main content

Advertisement

Log in

Parallel algebraic hybrid solvers for large 3D convection-diffusion problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we study the parallel scalability of variants of an algebraic additive Schwarz preconditioner for the solution of large three dimensional convection diffusion problems in a non-overlapping domain decomposition framework. To alleviate the computational cost, both in terms of memory and floating-point complexity, we investigate variants based on a sparse approximation or on mixed 32- and 64-bit calculation. The robustness and the scalability of the preconditioners are investigated through extensive parallel experiments on up to 2,000 processors. Their efficiency from a numerical and parallel performance view point are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  3. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorenson, D.: LAPACK Users’ Guide, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1995)

    Google Scholar 

  4. Arioli, M., Duff, I.S., Gratton, S., Pralet, S.: Note on GMRES preconditioned by a perturbed LDLt decomposition with static pivoting. SIAM J. Sci. Comput. 25(5), 2024–2044 (2007)

    Article  MathSciNet  Google Scholar 

  5. Buttari, A., Dongarra, J., Kurzak, J., Luszczek, P., and Tomov, S.: Using mixed precision for sparse matrix computations to enhance the performance while achieving 64-bit accuracy. ACM Trans. Math. Software 34(4), 1–22 (2008)

    Article  MathSciNet  Google Scholar 

  6. Cai, X.C., Saad, Y.: Overlapping domain decomposition algorithms for general sparse matrices. Numer. Linear Algebra Appl. 3, 221–237 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carvalho, L.M., Giraud, L., Meurant, G.: Local preconditioners for two-level non-overlapping domain decomposition methods. Numer. Linear Algebra Appl. 8(4), 207–227 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Drkošová, J., Rozložník, M., Strakoš, Z., Greenbaum, A.: Numerical stability of the GMRES method. BIT, 35, 309–330 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Software 9, 302–325 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frayssé, V., Giraud, L., Gratton, S.: Algorithm 881: a set of FGMRES routines for real and complex arithmetics on high performance computers. ACM Trans. Math. Software 35(2), 1–12 (2008)

    Article  Google Scholar 

  11. Frayssé, V., Giraud, L., Gratton, S., Langou, J.: Algorithm 842: a set of GMRES routines for real and complex arithmetics on high performance computers. ACM Trans. Math. Software 31(2), 228–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gale, A.C., Almeida, R.C., Malta, S.M.C., Loula, A.F.D.: Finite element analysis of convection dominated reaction-diffusion problems. Appl. Numer. Math. 48(2), 205–222 (2004)

    Article  MathSciNet  Google Scholar 

  13. Giraud, L., Gratton, S., Langou, J.: Convergence in backward error of relaxed GMRES. SIAM J. Sci. Comput. 29(2), 710–728 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Giraud, L., Haidar, A., Watson, L.T.: Parallel scalability study of hybrid preconditioners in three dimensions. Parallel Comput. 34, 363–379 (2008)

    Article  MathSciNet  Google Scholar 

  15. Giraud, L., Marrocco, A., Rioual, J.-C.: Iterative versus direct parallel substructuring methods in semiconductor device modelling. Numer. Linear Algebra Appl. 12(1), 33–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Haidar, A.: On the parallel scalability of hybrid solvers for large 3D problems. Ph.D. dissertation, INPT, June 2008. TH/PA/08/57.

  17. Kurzak, J., Dongarra, J.: Implementation of the mixed-precision high performance LINPACK benchmark on the CELL processor. Technical Report LAPACK Working Note #177 UT-CS-06-580, University of Tennessee Computer Science (2006) September

  18. Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A., Dongarra, J.: Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy. Technical Report LAPACK Working Note #175 UT-CS-06-574, University of Tennessee Computer Science (2006) April

  19. Mathew, T.: Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer, New York (2008)

    MATH  Google Scholar 

  20. Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  21. Paige, C., Rozložník, M., Strakoš, Z.: Modified Gram-Schmidt (MGS), least-squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl. 28(1), 264–284 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Numerical mathematics and scientific computation. Oxford Science Publications, Oxford (1999)

    Google Scholar 

  23. Radicati, G., Robert, Y.: Parallel conjugate gradient-like algorithms for solving nonsymmetric linear systems on a vector multiprocessor. Parallel Comput. 11, 223–239 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical methods for singularly perturbed differential equations. Springer Series in Computational Mathematics, vol. 24. Springer-Verlag, Berlin. Convection-diffusion and flow problems (1996)

  25. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shanthi, V., Ramanujam, N.: Asymptotic numerical methods for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. Appl. Math. Comput. 133(2–3), 559–579 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Smith, B.F., Bjørstad, P.E., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  29. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Giraud.

Additional information

This research activity was partially supported within the framework of the ANR-CIS project Solstice (ANR-06-CIS6- 010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraud, L., Haidar, A. Parallel algebraic hybrid solvers for large 3D convection-diffusion problems. Numer Algor 51, 151–177 (2009). https://doi.org/10.1007/s11075-008-9248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9248-x

Keywords

Navigation