Abstract
In the course of their work on Salem numbers and uniform distribution modulo 1, A. Akiyama and Y. Tanigawa proved some inequalities concerning the values of the Bessel function J 0 at multiples of π, i.e., at the zeros of J 1/2. This raises the question of inequalities and monotonicity properties for the sequences of values of one cylinder function at the zeros of another such function. Here we derive such results by differential equations methods.
This is a preview of subscription content, access via your institution.
References
Akiyama, S., Tanigawa, Y.: Salem numbers and uniform distribution modulo 1. Publ. Math. (Debr.) 64, 329–341 (2004)
Elbert, Á.: An approximation for the zeros of Bessel functions. Numer. Math. 59, 647–657 (1991)
Elbert, Á.: Some recent results on the zeros of Bessel functions and orthogonal polynomials. Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999). J. Comput. Appl. Math. 133(1–2), 65–83 (2001)
Elbert, Á., Gatteschi, L., Laforgia, A.: On the concavity of zeros of Bessel functions. Appl. Anal. 16, 261–278 (1983)
Elbert, Á., Laforgia, A.: On the square of the zeros of Bessel functions. SIAM J. Math. Anal. 15, 206–212 (1984)
Elbert, Á., Laforgia, A.: Monotonicity properties of the zeros of Bessel functions. SIAM J. Math. Anal. 17, 1483–1488 (1986)
Elbert, Á., Laforgia, A.: Further results on McMahon’s asymptotic approximations. J. Phys. A: Math. Gen. 33, 6333–6341 (2000)
Gatteschi, L.: Valutazione dell’errore nella formula di McMahon per gli zeri della J n (x) di Bessel nel caso 0 ≤ n ≤ 1. Rivista Mat. Univ. Parma 1, 347–362 (1950)
Gatteschi, L.: Funzioni Speciali. UTET, Torino (1973)
Gatteschi, L.: Asymptotics and bounds for the zeros of Laguerre polynomials: A survey. J. Comput. Appl. Math. 144, 7–27 (2002)
Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)
Laforgia, A.: Sugli zeri delle funzioni di Bessel. Calcolo 17, 211–220 (1980)
Lorch, L., Szego, P.: Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109, 55–73 (1963)
Muldoon, M.E.: Continuous ranking of zeros of special functions. J. Math. Anal. Appl. (2008). doi:10.1016/j.jmaa.2008.01.082
Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)
Author information
Authors and Affiliations
Corresponding author
Additional information
To the memory of Luigi Gatteschi.
This work was supported by grants from the Natural Sciences and Engineering Research Council, Canada.
Rights and permissions
About this article
Cite this article
Lorch, L., Muldoon, M.E. Monotonic sequences related to zeros of Bessel functions. Numer Algor 49, 221–233 (2008). https://doi.org/10.1007/s11075-008-9189-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-008-9189-4
Keywords
- Bessel functions
- Cylinder functions
- Inequalities
- Monotonicity properties
Mathematics Subject Classifications (2000)
- Primary 33C10
- Secondary 34C10