Skip to main content
Log in

Approximation of surfaces with fault(s) and/or rapidly varying data, using a segmentation process, D m-splines and the finite element method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In many problems of geophysical interest, one has to deal with data that exhibit complex fault structures. This occurs, for instance, when describing the topography of seafloor surfaces, mountain ranges, volcanoes, islands, or the shape of geological entities, as well as when dealing with reservoir characterization and modelling. In all these circumstances, due to the presence of large and rapid variations in the data, attempting a fitting using conventional approximation methods necessarily leads to instability phenomena or undesirable oscillations which can locally and even globally hinder the approximation. As will be shown in this paper, the right approach to get a good approximant consists, in effect, in applying first a segmentation process to precisely define the locations of large variations and faults, and exploiting then a discrete approximation technique. To perform the segmentation step, we propose a quasi-automatic algorithm that uses a level set method to obtain from the given (gridded or scattered) Lagrange data several patches delimited by large gradients (or faults). Then, with the knowledge of the location of the discontinuities of the surface, we generate a triangular mesh (which takes into account the identified set of discontinuities) on which a D m-spline approximant is constructed. To show the efficiency of this technique, we will present the results obtained by its application to synthetic datasets as well as real gridded datasets in Oceanography and Geosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apprato, D., Gout, C.: A result about scale transformation families in approximation: application to surface fitting from rapidly varying data. Numer. Algorithms 23(2–3), 263–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apprato, D., Arcangéli, R., Manzanilla, R.: Sur la construction de surfaces de classe Ck à partir d’ un grand nombre de données de Lagrange M2AN 21(4), 529–555 (1987)

    Google Scholar 

  3. Apprato, D., Gout, C., Sénéchal, P.: Ck reconstruction of surfaces from partial data. Math. Geol. 32(8), 969–983 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apprato, D., Gout, C., Komatitsch, D.: A new method for Ck approximation from a set of curves: application to ship track data in the Marianas trench. Math. Geol. 34(7), 831–843 (2002)

    Article  MATH  Google Scholar 

  5. Arcangéli, R.: Some application of discrete Dm-spline, Math. Methods in CAGD. In: Lyche, T., Schumaker, L.L. (eds.), pp. 35–44. Academic Press (1989)

  6. Arcangéli, R., Manzanilla, R., Torrens, J.J.: Approximation spline de surfaces de type explicite comportant des failles. Math. Model. and Numer. Anal. 31(5), 643–676 (1997)

    MATH  Google Scholar 

  7. Arcangéli, R., Lopez de Silanes, M.C., Torrens, J.J.: Multidimensional minimizing splines. Theory and Applications. Kluwer Academic Publishers, Boston, MA (ISBN: 1-4020-7786-6) (2004)

    MATH  Google Scholar 

  8. Arcangeli, R., Gout, J.L.: Error estimates for Lagrange interpolation—Sur l’evaluation de l’erreur d’interpolation de Lagrange dans un ouvert de R n. Math. Model. and Numer. Anal., RAIRO Anal. Numer. 10(3), 5–27 (1976)

    Google Scholar 

  9. Awanou, G., Lai, M.J., Wenston, P.: The multivariate spline method for scattered data fitting and numerical solution of partial differential equations in Wavelets and Splines: Athens 2005. In: Chen, G., Lai, M.J. (eds.), pp. 24–74. Nashboro Press (2006)

  10. de Boor, C.: A Practical Guide to Splines. Springer Verlag, Berlin (1978)

    MATH  Google Scholar 

  11. Bouhamidi, A., Le Méhauté, A.: Multivariate interpolating (m, l, s)-splines. Adv. Comput. Math. 11(4), 287–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bozzini, M., Lenarduzzi, L.: Recovering a function with discontinuities from correlated data. In: Fontanella, F., Jetter, K., Laurent, P.J. (eds.) Advanced Topics in Multivariate Approximation. WSP Singapore (1996)

  13. Bozzini, M., Rossini, M.: Approximating surfaces with discontinuities. Math. Comput. Model. 31(6–7), 193–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Casciola, G., Franchini, E., Romani, L.: The mixed directional difference-summation algorithm for generating the Bézier net of a trivariate four-direction box-spline. Numer. Algorithms 43(1), 75–98 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours, geodesic active contours. Int. J. Comput. Vis. 22(1), 61–87 (1997)

    Article  MATH  Google Scholar 

  16. Chakraborty, A., Staib, L., Duncan, J.: Deformable boundary finding in medical images by integrating gradient and region information. IEEE Trans. Med. Imaging 15(6), 859–870 (1996)

    Article  Google Scholar 

  17. Ciarlet, P.G.: The finite element method for elliptic problems. North Holland (1977)

  18. Deshpande, L.N., Girard, D.A.: Fast computation of cross-validation robust splines and other nonlinear smoothing splines in Curves and Surfaces, pp. 143–148. Academic Press (1991)

  19. Foley, T.A.: Weighted bicubic spline interpolation to rapidly varying data. ACM Trans. Graph. 6, 1–18 (1987)

    Article  MATH  Google Scholar 

  20. Franke, R.: Smooth interpolation of scattered data by local thin plate splines. Comp. Math. Appl. 8(4), 273–281 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. GAMMA meshing, INRIA, http://www-c.inria.fr/gamma/download/

  22. Girard, D.A.: Monte-Carlo cross-validation procedure for large least squares problems with noisy data. Numer. Math. 56(1), 1–23 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gout, C., Le Guyader, C.: Segmentation of complex geophysical structures with well data. Comput. Geosci. 10(4), 361–372 (2006)

    Article  MathSciNet  Google Scholar 

  24. Gout, C., Komatitsch, D.: Surface fitting of rapidly varying data using rank coding: application to geophysical surfaces. Math. Geol. 32(7), 873–888 (2000)

    Article  Google Scholar 

  25. Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numer. Algorithms 39(1–3), 155–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gout, J.L.: Error estimates for hermite interpolation - Estimation de l’erreur d’interpolation d’Hermite dans R n. [French] Numer. Math. 28(4), 407–429 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gutzmer, T., Iske, A.: Detection of discontinuities in scattered data approximation. Numer. Algorithms 16(2), 155–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Le Guyader, C., Apprato, D., Gout, C.: Using a level set approach for image segmentation under interpolation conditions. Numer. Algorithms 39(1–3), 221–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Laurent, P.J.: Approximation et optimisation. Hermann, Paris (1972)

    MATH  Google Scholar 

  30. Malladi, R., Sethian, J.A.: Image processing via level set curvature flow. Proc. Natl. Acad. Sci. 92(15), 7046–7050 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Malladi, R., Sethian, J.A., Vemuri, B.C.: A fast level set based algorithm for topology independent shape modeling and recovery. In: Proc. of the third ECCV, pp. 3–13. Stockholm, Sweden (1994)

  32. Manzanilla, R.: Sur l’approximation de surfaces définies par une équation explicite, Thèse, Université de Pau (1986)

  33. MEFISTO, Perronet, A.: http://www.ann.jussieu.fr/~perronnet/mefisto.charger.php3

  34. METIS, METIS—Serial Graph Partitioning and Fill-reducing Matrix Ordering, download at URL: http://glaros.dtc.umn.edu/gkhome/views/metis

  35. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967)

    Google Scholar 

  36. Nielson, G.M., Franke, R.: A method for construction of surfaces under tension. Rocky Mt. J. Math. 14, 203–221 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Osher, S., Sethian, J.A.: Fronts propagation with curvature dependant speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag (2003)

  39. Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. Proceedings of ICCV (1999)

  40. Parra, M.C., Lopez de Silanes, M.C., Torrens, J.J.: Vertical fault detection from scattered data. J. Comput. Appl. Math. 73(5), 225–239 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Romani, L., Sabin, M.A.: The conversion matrix between uniform B-spline and Bézier representations. Comput. Aided Geom. Des. 21(6), 549–560 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13–2, 229–251 (1994)

    Article  Google Scholar 

  43. Salkauskas, K.: C 1 splines for interpolation of rapidly varying data. Rocky Mt. J. Math. 14, 239–250 (1974)

    MathSciNet  Google Scholar 

  44. Samson, C., Blanc-Feraud, L., Aubert, G., Zerubia, J.: A level set method for image classification. Int. Conf. Scale-Space Theories in Computer Vision, pp. 306–317 (1999)

  45. Schoenberg, I.J.: Contribution to the problem of approximation of equidistant data by anlytic functions. Q. Appl. Math. 4, 45–99 and 112–141 (1960)

    MathSciNet  Google Scholar 

  46. Schumaker, L.L.: Fitting surfaces to scattered data. In: Lorentz, G.G., Chui, C.K., Schumaker, L.L. (eds.) Approximation Théorie II, pp. 203–269. Academic Press (1976)

  47. Schumaker, L.L., von Golitschek, M.: Penalized least squares fitting. Serdica 18, 1001–1020 (2002)

    MathSciNet  Google Scholar 

  48. Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and material science, 2nd edn. p. 378. Cambridge University Press (1999)

  49. Torrens, J.J.: Interpolacion de superficies parametricas con discontinuidades mediante, Elementos Finitos, Aplicaciones, Thèse, Universidad de Zaragoza, Spain (1991)

  50. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  51. Zenisek, A.: A general theorem on triangular finite Cm-elements. RAIRO R-2, 119–127 (1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-G. Saint-Guirons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gout, C., Le Guyader, C., Romani, L. et al. Approximation of surfaces with fault(s) and/or rapidly varying data, using a segmentation process, D m-splines and the finite element method. Numer Algor 48, 67–92 (2008). https://doi.org/10.1007/s11075-008-9177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9177-8

Keywords

Navigation