Skip to main content

Advertisement

Log in

Gamma function inequalities

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We prove various new inequalities for Euler’s gamma function. One of our theorems states that the double-inequality

$$\alpha \cdot \Bigl(\frac{1}{\Gamma\,(\sqrt{x})}+\frac{1}{\Gamma\,(\sqrt{y})}\Bigr) {\kern-1pt}<{\kern-1pt} \frac{1}{\Gamma\,( \sqrt{x+y-xy})}+ \frac{1}{\Gamma\,( \sqrt{xy})} {\kern-1pt} <{\kern-1pt} \beta \cdot \Bigl( \frac{1}{\Gamma\,(\sqrt{x})}+\frac{1}{\Gamma\,(\sqrt{y})}\Bigr)$$

is valid for all real numbers x,y ∈ (0,1) with the best possible constant factors \(\alpha=1/\sqrt{2}=0.707...\) and β = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  2. Alsina, C., Tomás, M.S.: A geometrical proof of a new inequality for the gamma function. J. Inequal. Pure Appl. Math. 6(2), Art. 48 (2005)

    Google Scholar 

  3. Alzer, H.: Inequalities for the gamma function. Proc. Am. Math. Soc. 128, 141–147 (1999)

    Article  MathSciNet  Google Scholar 

  4. Alzer, H.: A power mean inequality for the gamma function. Monatsh. Math. 131, 179–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alzer, H.: Mean-value inequalities for the polygamma functions. Aequ. Math. 61, 151–161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alzer, H.: On a gamma function inequality of Gautschi. Proc. Edinb. Math. Soc. 45, 589–600 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alzer, H.: Inequalities involving Γ (x) and Γ (1/x). J. Comput. Appl. Math. 192, 460–480 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alzer, H., Berg, C.: Some classes of completely monotonic functions, II. Ramanujan J. 11, 225–248 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alzer, H., Ruscheweyh, S.: A subadditive property of the gamma function. J. Math. Anal. Appl. 285, 564–577 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daróczy, Z.: On the general solution of the functional equation f(x + y − xy) + f(xy) = f(x) + f(y). Aequ. Math. 6, 130–132 (1971)

    Article  MATH  Google Scholar 

  11. Davidson, T.M.K.: The complete solution of Hosszú’s functional equation over a field. Aequ. Math. 11, 273–276 (1974)

    Article  Google Scholar 

  12. Davis, P.J.: Leonhard Euler’s integral: a historical profile of the gamma function. Amer. Math. Mon. 66, 849–869 (1959)

    Article  MATH  Google Scholar 

  13. Gautschi, W.: A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5, 278–281 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gautschi, W.: Some mean value inequalities for the gamma function. SIAM J. Math. Anal. 5, 282–292 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gautschi, W.: The incomplete gamma function since Tricomi. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Atti Convegni Lincei, vol. 147, pp. 203–237. Accad. Naz. Lincei, Rome (1998)

    Google Scholar 

  16. Giordano, C., Laforgia, A.: Inequalities and monotonicity properties for the gamma function. J. Comput. Appl. Math. 133, 387–396 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kershaw, D., Laforgia, A.: Monotonicity results for the gamma function. Atti Accad. Scienze Torino 119, 127–133 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Kim, T., Adiga, C.: On the q-analogue of gamma functions and related inequalities. J. Inequal. Pure Appl. Math. 6(4), Art. 118 (2005)

    Google Scholar 

  19. Laforgia, A., Sismondi, S.: A geometric mean inequality for the gamma function. Boll. Un. Ital. A 3(7), 339–342 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Lucht, L.G.: Mittelwertungleichungen für Lösungen gewisser Differenzengleichungen. Aequ. Math. 39, 204–209 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maksa, G., Páles, Z.: On Hosszú’s functional inequality. Publ. Math. Debrecen 36, 187–189 (1989)

    MathSciNet  MATH  Google Scholar 

  22. McD. Mercer, A.: Some new inequalities for the gamma, beta and zeta functions. J. Inequal. Pure Appl. Math. 7(1), Art. 29 (2006)

  23. Mitrinović, D.S.: Analytic Inequalities. Springer, New York (1970)

    MATH  Google Scholar 

  24. Neuman, E.: Inequalities involving a logarithmically convex function and their applications to special functions. J. Inequal. Pure Appl. Math. 7(1), Art. 16 (2006)

    Google Scholar 

  25. Sándor, J.: A note on certain inequalities for the gamma function. J. Inequal. Pure Appl. Math. 6(3), Art. 61 (2005)

    Google Scholar 

  26. Webster, R.J.: cos(sinx) ≥ |cosx| ≥ |sin(cosx)|. Math. Gaz. 68, 37 (1984)

    Article  Google Scholar 

  27. Wright, E.M.: A generalisation of Schur’s inequality. Math. Gaz. 40, 217 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Alzer.

Additional information

To the memory of Professor Luigi Gatteschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alzer, H. Gamma function inequalities. Numer Algor 49, 53–84 (2008). https://doi.org/10.1007/s11075-008-9160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9160-4

Keywords

Mathematics Subject Classification (2000)

Navigation