Skip to main content
Log in

Convergence of polyharmonic splines on semi-regular grids \(\mathbb{Z}{{\boldsymbol{\times}} \boldsymbol{a}} {\mathbb{Z}^{\it\boldsymbol{n}}}\) for \({\boldsymbol{a}\rightarrow\mathbf {0}}\)

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let p, n ∈ ℕ with 2pn + 2, and let I a be a polyharmonic spline of order p on the grid ℤ × an which satisfies the interpolating conditions \(I_{a}\left( j,am\right) =d_{j}\left( am\right) \) for j ∈ ℤ, m ∈ ℤn where the functions d j : ℝn → ℝ and the parameter a > 0 are given. Let \(B_{s}\left( \mathbb{R}^{n}\right) \) be the set of all integrable functions f : ℝn → ℂ such that the integral

$$ \left\| f\right\| _{s}:=\int_{\mathbb{R}^{n}}\left| \widehat{f}\left( \xi\right) \right| \left( 1+\left| \xi\right| ^{s}\right) d\xi $$

is finite. The main result states that for given \(\mathbb{\sigma}\geq0\) there exists a constant c>0 such that whenever \(d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,\) j ∈ ℤ, satisfy \(\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right) \) for all j ∈ ℤ there exists a polyspline S : ℝn+1 → ℂ of order p on strips such that

$$ \left| S\left( t,y\right) -I_{a}\left( t,y\right) \right| \leq a^{2p-1}c\cdot D\cdot\left( 1+\left| t\right| ^{\mathbb{\sigma}}\right) $$

for all y ∈ ℝn, t ∈ ℝ and all 0 < a ≤ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N., Creese, T., Lipkin, L.: Polyharmonic Functions. Clarendon, Oxford (1983)

    MATH  Google Scholar 

  2. Bejancu, A., Kounchev, O., Render, H.: Cardinal interpolation with biharmonic polysplines on strips, curve and surface fitting (Saint Malo 2002), pp. 41–58. Mod. Methods Math., Nashboro, Brentwood, TN (2003)

  3. Bejancu, A., Kounchev, O., Render, H.: Cardinal interpolation with periodic polysplines on strips. (to appear in Calcolo)

  4. Buhmann, M.: Radial Basis Functions : Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  5. Dyn, N.: Interpolation and approximation by radial and related functions. Approximation theory VI, vol. I (College Station, TX, 1989), pp. 211–234. Academic, Boston, MA (1989)

    Google Scholar 

  6. Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Pseudo-Differential Operators. Springer-Verlag, Berlin–Heidelberg–New York–Tokyo (1983)

    Google Scholar 

  7. Kounchev, O.: Optimal recovery of linear functionals of Peano type through data on manifolds. Comput. Math. Appl. 30(3–6), 335–351 (1995)

    Article  MATH  Google Scholar 

  8. Kounchev, O.I.: Multivariate Polysplines. Applications to Numerical and Wavelet Analysis. Academic, London–San Diego (2001)

    MATH  Google Scholar 

  9. Kounchev, O., Render, H.: Wavelet analysis of cardinal L-splines and construction of multivariate prewavelets. In: Chui, C.K., et al. (eds.) Approximation Theory X. Wavelets, Splines, and Applications, pp. 333–353. Vanderbilt University Press, Nashville, TN. Innovations in Applied Mathematics (2002)

  10. Kounchev, O., Render, H.: The approximation order of polysplines. Proc. Am. Math. Soc. 132, 455–461 (2004)

    Article  MATH  Google Scholar 

  11. Kounchev, O., Render, H.: Polyharmonic splines on grids ℤ×an and their limits. Math. Comp. 74, 1831–1841 (2005)

    Article  MATH  Google Scholar 

  12. Kounchev, O., Render, H.: Cardinal interpolation with polysplines on annuli. J. Approx. Theory 137, 89–107 (2005)

    Article  MATH  Google Scholar 

  13. Kounchev, O., Wilson, M.: Application of PDE methods to Visualization of Heart Data. In: Wilson, M.J., Martin, R.R. (eds.) Mathematics of Surfaces. Lecture Notes in Computer Science vol. 2768, pp. 377–391. Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  14. Liu, Y., Lu, G.: Simultaneous approximations for functions in Sobolev spaces by derivates of polyharmonic cardinal splines. J. Approx. Theory 101, 49–62 (1999)

    Article  MATH  Google Scholar 

  15. Madych, W.R., Nelson, S.A.: Polyharmonic cardinal splines. J. Approx. Theory 60, 141–156 (1990)

    Article  MATH  Google Scholar 

  16. Madych, W.R., Nelson, S.A.: Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70, 94–114 (1992)

    Article  MATH  Google Scholar 

  17. Schaback, R.: Multivariate interpolation and approximation by translates of a basis function. In: Chui, C.K., et al. (eds.) Approximation Theory VIII, vol. 1, pp. 491–514. Approximation and Interpolation. World Scientific, Singapore (1995)

    Google Scholar 

  18. Schoenberg, I.J.: Cardinal Spline Interpolation. SIAM, Philadelphia, PA (1973)

    MATH  Google Scholar 

  19. Schoenberg, I.J.: Cardinal interpolation and spline functions. J. Approx. Theory 2, 167–206 (1969)

    Article  MATH  Google Scholar 

  20. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kounchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kounchev, O., Render, H. Convergence of polyharmonic splines on semi-regular grids \(\mathbb{Z}{{\boldsymbol{\times}} \boldsymbol{a}} {\mathbb{Z}^{\it\boldsymbol{n}}}\) for \({\boldsymbol{a}\rightarrow\mathbf {0}}\) . Numer Algor 44, 255–272 (2007). https://doi.org/10.1007/s11075-007-9099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9099-x

Keywords

Mathematics Subject Classifications (2000)

Navigation