Skip to main content
Log in

Computing ECT-B-splines recursively

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

ECT-spline curves for sequences of multiple knots are generated from different local ECT-systems via connection matrices. Under appropriate assumptions there is a basis of the space of ECT-splines consisting of functions having minimal compact supports, normalized to form a nonnegative partition of unity. The basic functions can be defined by generalized divided differences [24]. This definition reduces to the classical one in case of a Schoenberg space. Under suitable assumptions it leads to a recursive method for computing the ECT-B-splines that reduces to the de Boor–Mansion–Cox recursion in case of ordinary polynomial splines and to Lyche's recursion in case of Tchebycheff splines. For sequences of simple knots and connection matrices that are nonsingular, lower triangular and totally positive the spline weights are identified as Neville–Aitken weights of certain generalized interpolation problems. For multiple knots they are limits of Neville–Aitken weights. In many cases the spline weights can be computed easily by recurrence. Our approach covers the case of Bézier-ECT-splines as well. They are defined by different local ECT-systems on knot intervals of a finite partition of a compact interval [a,b] connected at inner knots all of multiplicities zero by full connection matrices A [i] that are nonsingular, lower triangular and totally positive. In case of ordinary polynomials of order n they reduce to the classical Bézier polynomials. We also present a recursive algorithm of de Boor type computing ECT-spline curves pointwise. Examples of polynomial and rational B-splines constructed from given knot sequences and given connection matrices are added. For some of them we give explicit formulas of the spline weights, for others we display the B-splines or the B-spline curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987) 165–219.

    Article  MATH  MathSciNet  Google Scholar 

  2. P.J. Barry, de Boor-Fix dual functionals and algorithms for Tchebycheffian B-splines curves, Constr. Approx. 12 (1996) 385–408.

    Article  MATH  MathSciNet  Google Scholar 

  3. P.J. Barry, N. Dyn, R.N. Goldman and C.A. Micchelli, Identities for piecewise polynomial spaces determined by connection matrices, Aequationes Math. 42 (1991) 123–136.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Brezinski and G. Walz, Sequences of transformations of triangular recursion schemes, with applications in numerical analysis, JCAM 34 (1991) 361–383.

    MathSciNet  MATH  Google Scholar 

  5. B. Buchwald and G. Mühlbach, Rational splines with prescribed poles, JCAM 167 (2004) 271–291.

    MATH  Google Scholar 

  6. N. Dyn and C.A. Micchelli, Piecewise polynomial spaces and geometric continuity of curves, Numer. Math. 54 (1988) 319–337.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Dyn and A. Ron, Recurrence relations for Tchebycheffian B-Splines, J. Analyse Math. 51 (1988) 118–138.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Gresbrand, Rational B-splines with prescribed poles, Num. Algorithms 12 (1996) 151–158.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Karlin and W.J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics (Interscience Publishers, 1966).

  10. T. Lyche, A recurrence relation for Chebychevian B-splines, Constr. Approx. 1 (1985) 155–173.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Lyche and R. Winther, A stable recurrence relation for trigonometric B-splines, J. Approx. Theory 25 (1979) 266–279.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.-L. Mazure, Blossoming: a geometric approach, Constr. Approx. 15 (1999) 33–68.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.-L. Mazure, Chebyshev splines beyond total positivity, Adv. Comput. Math. 14 (2001) 129–156.

    Article  MATH  MathSciNet  Google Scholar 

  14. M.-L. Mazure and H. Pottmann, Tchebycheff curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic Publ., 1996) pp. 187–218.

  15. M.-L. Mazure and P.-J. Laurent, Piecewise smooth spaces in duality: applications to blossoming, J. Approx. Thory 98 (1999) 316–353.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Mühlbach, A recurrence formula for generalized divided differences and some applications, J. Approx. Theory 9 (1973) 165–172.

    Article  MATH  Google Scholar 

  17. G. Mühlbach, Newton- und Hermite Interpolation mit Čebyšev-Systemen, ZAMM 54 (1974) 541–550.

    Article  MATH  Google Scholar 

  18. G. Mühlbach, A remark on calculating with B-splines, Rev. Roum. Math. Pures Appl. 24 (1979) 1449–1550.

    MATH  Google Scholar 

  19. G. Mühlbach, Neville–Aitken algorithms for interpolation by functions of Čebyšev-Systems in the sense of Newton and in a generalized sense of Hermite, in: Approximation Theory with Applications, eds. A.G. Law and B.N. Sahney (Academic Press, 1976) pp. 200–212.

  20. G. Mühlbach, Recursive triangles, in: Proceedings of the 3d Int. Coll. on Numerical Analysis, eds. D. Bainov and V. Covachev (VSP, 1995) pp. 129–134.

  21. G. Mühlbach, A recurrence relation for generalized divided differences with respect to ECT-systems, Numer. Algorithms 22 (1999) 319–326.

    Article  Google Scholar 

  22. G. Mühlbach, Interpolation by Cauchy–Vandermonde systems and applications, JCAM 122 (2000) 203–222.

    MATH  Google Scholar 

  23. G. Mühlbach, One sided Hermite interpolation by Piecewise different generalized polynomials, JCAM, in print (2006).

  24. G. Mühlbach, ECT-B-splines defined by generalized divided differences, JCAM 187 (2006), 96–122.

  25. T. Popoviciu, Sur le reste dans certaines formules linéaires d'approximation de l'analyse, Mathematica (Cluj) 1(4) (1959) 95–142.

    MathSciNet  Google Scholar 

  26. H. Pottmann, The geometry of Tchebycheffian splines, CAGD 10 (1993) 181–210.

    MATH  MathSciNet  Google Scholar 

  27. H. Prautzsch, B-Splines with Arbitrary Connection Matrices, Constr. Approx. 20 (2004) 191–205.

    Article  MATH  MathSciNet  Google Scholar 

  28. L.L. Schumaker, Spline functions. Basic Theory (Wiley Interscience, New York, 1981).

    MATH  Google Scholar 

  29. Y. Tang and G. Mühlbach, Cardinal ECT-splines, Numer. Algorithms 38 (2005) 259–283.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. Walz, A unified approach to B-Spline recursions and knot insertion, with applications to new recursion formulas, Adv. Comp. Math. 3 (1995) 89–100.

    Article  MATH  MathSciNet  Google Scholar 

  31. G. Walz, Identities for trigonometric B-splines, with applications to curve design, BIT 37 (1997) 189–201.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter W. Mühlbach.

Additional information

Communicated by C. Brezinski

*Supported in part by INTAS 03-51-6637.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlbach, G.W., Tang, Y. Computing ECT-B-splines recursively. Numer Algor 41, 35–78 (2006). https://doi.org/10.1007/s11075-005-9005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-005-9005-3

Keywords

AMS subject classification

Navigation