Skip to main content
Log in

A deterministic scheme for Smoluchowski's coagulation equation based on binary grid refinement

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present a deterministic scheme for the discrete Smoluchowski's coagulation equation based on a binary grid refinement. Starting from the binary grid Ω0={1,2,4,8,16,. . .}, we first introduce an appropriate grid refinement by adding at each level 2l grid points in every binary subsection of the grid Ωl. In a next step we derive an approximate equation for the dynamic behavior on each level Ωl based on a piecewise constant approximation of the right hand side of Smoluchowski's equation. Numerical results show that the computational effort can be drastically decreased compared to the corresponding complete integer grid. When considering unbounded kernels in Smoluchowski's equation we use an adaptive time step method to overcome numerical instabilities which may occur at the tails of the density function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernoulli 5 (1999) 3–48.

    Google Scholar 

  2. H. Babovsky, On a Monte-Carlo scheme for Smoluchowski's coagulation equation, Monte Carlo Methods Appl. 5 (1999) 1–18.

    Google Scholar 

  3. A.S. Cavaretta, W. Dahmen and C.A. Michelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991).

  4. A. Cohen, N. Dyn and B. Matei, Quasilinear subdivision schemes with applications to ENO interpolation, Appl. Comput. Harmon. Anal. 15 (2003) 89–116.

    Article  Google Scholar 

  5. Y.R. Domilovskiy, A.A. Lushnikov and V.N. Piskurov, Monte Carlo simulation of coagulation processes, Izv. Atmos. Ocean. Phys. 15 (1979) 129–134.

    Google Scholar 

  6. A. Eibeck and W. Wagner, An efficient stochastic algorithm for studying coagulation dynamics and gelation phenomena, SIAM J. Sci. Comput. 22 (2000) 802–821.

    Article  Google Scholar 

  7. A.L. Garcia, C. Van den Broeck, M. Aertsens and R. Serneels, A Monte Carlo simulation of coagulation, Phys. A Math. Gen. 143 (1987) 535–546.

    Google Scholar 

  8. D.N. Gillespie, An exact method for numerically simulating the stochastic coalescence process in a cloud, J. Atmospheric Sci. 32 (1975) 1977–1989.

    Article  Google Scholar 

  9. A. Harten, S. Osher, B. Engquist and S.R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes, Appl. Numer. Math. 2 (1986) 347–377.

    Article  Google Scholar 

  10. A. Kolodko and K. Sabelfeld, Stochastic particle methods for Smoluchowski coagulation equation: Variance reduction and error estimations, Preprint No. 842, Weierstraß-Institut für Angewandte Analysis und Stochastik (2003).

  11. C. Lecot and W. Wagner, A quasi-Monte Carlo scheme for Smoluchowski's coagulation equation, Math. Comp. 73 (2004) 1953–1966.

    Article  Google Scholar 

  12. F. Leyvraz and H.R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A Math. Gen. 14 (1981) 3389–3405.

    Article  Google Scholar 

  13. K. Liffman, A direct simulation Monte Carlo method for cluster coagulation, J. Comput. Phys. 100 (1992) 116–127.

    Article  Google Scholar 

  14. J.B. McLeod, On an infinite set of nonlinear differential equations I,II, Quart. J. Math. Oxf. II Ser. 13 (1962) 119–128, 193–205.

    Google Scholar 

  15. H. Niederreiter, ed., Monte Carlo and Quasi-Monte Carlo Methods 2002 (Springer, Berlin, 2004).

    Google Scholar 

  16. K.K. Sabelfeld, S.V. Rogasinsky, A.A. Kolodko and A.I. Levykin, Stochastic algorithms for solving Smoluchowsky coagulation equation and application to aerosol growth simulation, Monte Carlo Methods Appl. 2 (1996) 41–87.

    Google Scholar 

  17. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–471.

    Article  Google Scholar 

  18. M. v. Smoluchowski, Versuch einer mathematischen Theorie des Koagulationskinetik kolloider Lösungen, Z. Phys. Chem. 92 (1916) 129–168.

    Google Scholar 

  19. M. v. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Z. 17 (1916) 557–571, 585–599.

    Google Scholar 

  20. J.L. Spouge, Monte Carlo results for random coagulation, J. Colloid Interface Sci. 107 (1985) 38–43.

    Article  Google Scholar 

  21. J. Struckmeier, Adaptive grid refinement for Smoluchowski's coagulation equation, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Struckmeier.

Additional information

Communicated by C. Brezinski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struckmeier, J. A deterministic scheme for Smoluchowski's coagulation equation based on binary grid refinement. Numer Algor 40, 233–249 (2005). https://doi.org/10.1007/s11075-005-4186-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-005-4186-3

Keywords

Navigation