Skip to main content
Log in

A parallel solver for adaptive finite element discretizations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A parallel solver for the adaptive finite element analysis is presented. The primary aim of this work has been to establish an efficient parallel computational procedure which requires only local computations to update the solution of the system of equations arising from the finite element discretization after a local mesh-adaptation step. For this reason a set of algorithms has been developed (two-level domain decomposition, recursive hierarchical mesh-refinement, selective solution-update of linear systems of equations) which operate upon general and easily available partitioning, meshing and linear systems solving algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth and J. T. Oden, A-Posteriori Error Estimation in Finite Element Analysis (Wiley, New York, 2000).

    Google Scholar 

  2. I. Babuska et al., Pollution-Error in the h-version of the finite element method and the local quality of a-posteriori error estimators, Finite Elements Anal. Design 17 (1994) 273–321.

    Article  Google Scholar 

  3. I. Babuska et al., A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method, Internat. J. Numer. Methods Engrg. 38 (1995) 4207–4235.

    Article  Google Scholar 

  4. R. Biswas and L. Oliker, Experiments with repartitioning and load balancing adaptive meshes, in: Grid Generation and Adaptive Algorithms, eds. M. Bern, J. Flaherty and M. Luskin, The IMA Volumes in Mathematics and Its Applications, Vol. 113 (Springer, New York, 1999).

    Google Scholar 

  5. D. Culler, R. Karp et al., LogP: towards a realistic model of parallel computation, Computer Science Division, University of California, Berkeley, available on the Internet.

  6. J. Demmel, M. Heat and H. van der Vorst, Parallel numerical linear algebra, Acta Numerica (1993) 111–197.

  7. I. Duff, Sparse numerical linear algebra: Direct methods and preconditioning, in: The State of the Art of Numerical Analysis (1997) pp. 27–62.

  8. A. George and J.W.H. Liu, A minimal storage implementation of the minimum degree algorithm, SIAM J. Numer. Anal. 17 (1980) 282–299.

    Article  Google Scholar 

  9. G. Golub and C. Van Loan, Matrix Computations, 3rd ed. (John Hopkins Univ. Press, Baltimore, MD, 1996).

    Google Scholar 

  10. T.J.R. Hughes et al., The variational multi-scale method – a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg. 166 (1998) 3–24.

    Article  Google Scholar 

  11. J.W.H. Liu, The multifrontal method and paging in sparse Cholesky factorization, ACM Trans. Math. Software 15 (1989) 310–325.

    Article  Google Scholar 

  12. J.W.H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM Review 34(1) (1992) 82–109.

    Article  Google Scholar 

  13. F. Marcuzzi, Adaptivity in the finite element method, Ph.D. thesis, Universita' di Padova (December 1999).

  14. METIS library's Home Page, http://www-users.cs.umn.edu/~karypis/metis.

  15. M. Morandi Cecchi and F. Marcuzzi, An approximate waves-bordering algorithm for adaptive finite elements analysis, Numer. Algorithms 21 (1999) 311–322.

    Article  Google Scholar 

  16. M. Morandi Cecchi and F. Marcuzzi, A fast numerical homogenization algorithm for finite element analysis, Internat. J. Numer. Methods Engrg. 46 (1999) 1639–1649.

    Article  Google Scholar 

  17. M. Morandi Cecchi and F. Marcuzzi, A linear system solver for adaptive FEM, in: European Conf. on Computational Mechanics (ECCM) '99, Munchen (1999).

  18. PETSc library, http://www.mcs.anl.gov/petsc.

  19. M.C. Rivara, Design and data structure of fully adaptive, multigrid, finite-element software, ACM TOMS 10(3) (1984) 242–264.

    Article  Google Scholar 

  20. J. Ruppert, A Delaunay refinement algorithm quality 2-dimensional mesh generation, J. Algorithms 18(3) 548–585.

  21. J.R. Schewchuk, Triangle: A two-dimensional quality mesh generator and Delaunay triangulator, at http://www.cs.cmu.edu/~quake/triangle.html.

  22. A. Schmidt and K. Siebert, ALBERT: An adaptive hierarchical finite element toolbox, available at the Internet http://www.mathematik.uni-freiburg.de/IAM/Research/projectsdz/albert.

  23. B. Smith, P. Bjorstad and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  24. I. Stakgold, Green's Functions and Boundary Value Problems (Academic Press, New York, 1983).

    Google Scholar 

  25. R. Verfurth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (Wiley/Teubner, New York/Stuttgart, 1997).

    Google Scholar 

  26. J.R. Whiteman, ed., The Mathematics of Finite Elements and Applications (MAFELAP) (Academic Press, New York, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Redivo-Zaglia

AMS subject classification

15A23, 65N50, 65N60

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcuzzi, F., Morandi Cecchi, M. A parallel solver for adaptive finite element discretizations. Numer Algor 40, 217–231 (2005). https://doi.org/10.1007/s11075-005-3143-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-005-3143-5

Keywords

Navigation