Skip to main content
Log in

Classical orthogonal polynomials in two variables: a matrix approach

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Classical orthogonal polynomials in two variables are defined as the orthogonal polynomials associated to a two-variable moment functional satisfying a matrix analogue of the Pearson differential equation. Furthermore, we characterize classical orthogonal polynomials in two variables as the polynomial solutions of a matrix second order partial differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bochner, Über Sturm–Liouvillesche Polynomsysteme, Math. Zeit. 29 (1929) 730–736.

    Google Scholar 

  2. T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, London, 1978).

    Google Scholar 

  3. C.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and its Applications, Vol. 81 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  4. R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge Univ. Presss, Cambridge, 1991).

    Google Scholar 

  5. Y.J. Kim, K.H. Kwon and J.K. Lee, Orthogonal polynomials in two variables and second-order partial differential equations, J. Comput. Appl. Math. 82 (1997) 239–260.

    Google Scholar 

  6. Y.J. Kim, K.H. Kwon and J.K. Lee, Partial differential equations having orthogonal polynomial solutions, J. Comput. Appl. Math. 99 (1998) 239–253.

    Google Scholar 

  7. Y.J. Kim, K.H. Kwon and J.K. Lee, Centrally symmetric orthogonal polynomials and second order partial differential equations, Methods Appl. Anal. 7(1) (2000) 57–64.

    Google Scholar 

  8. M.A. Kowalski, The recursion formulas for orthogonal polynomials in n variables, SIAM J. Math. Anal. 13 (1982) 309–315.

    Google Scholar 

  9. M.A. Kowalski, Orthogonality and recursion formulas for polynomials in n variables, SIAM J. Math. Anal. 13 (1982) 316–323.

    Google Scholar 

  10. H.L. Krall and I.M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. Ser. 4 76 (1967) 325–376.

    Google Scholar 

  11. L.L. Littlejohn, Orthogonal polynomial solutions to ordinary and partial differential equations, in: Orthogonal Polynomials and Their Applications. Proceedings Segovia, Spain (1986), Lecture Notes in Mathematics, Vol. 1329 (Springer, Berlin, 1988) pp. 98–124.

    Google Scholar 

  12. F. Marcellán, A. Branquinho and J. Petronilho, Classical orthogonal polynomials: A functional approach, Acta Appl. Math. 34 (1994) 283–303.

    Google Scholar 

  13. P. Maroni, Une théorie algébrique des polynômes orthogonaux, IMACS Ann. Comput. Appl. Math. 9 (1991) 95–130.

    Google Scholar 

  14. P.K. Suetin, Orthogonal Polynomials in Two Variables (Gordon and Breach, Amsterdam, 1999).

    Google Scholar 

  15. Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 (1993) 783–794.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Fernández.

Additional information

AMS subject classification

42C05, 33C50

Partially supported by Ministerio de Ciencia y Tecnología (MCYT) of Spain and by the European Regional Development Fund (ERDF) through the grant BFM2001-3878-C02-02, Junta de Andalucía, G.I. FQM 0229 and INTAS Project 2000-272.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, L., Pérez, T.E. & Piñar, M.A. Classical orthogonal polynomials in two variables: a matrix approach. Numer Algor 39, 131–142 (2005). https://doi.org/10.1007/s11075-004-3625-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-004-3625-x

Keywords

Navigation