Our aim is to establish some sufficient conditions for the oscillation of the second-order quasilinear neutral functional dynamic equation

on a time scale \( \mathbb{T} \), where ∣*f*(*t*, *u*)∣ ≥ *q*(*t*)∣*u*
^{β}∣, *r*, *p*, and *q* are real-valued *rd*-continuous positive functions defined on \( \mathbb{T} \), and *γ* and *β* > 0 are ratios of odd positive integers. Our results do not require that *γ* = *β* ≥ 1, *p*
^{∆}(*t*) ≥ 0,

Some examples are considered to illustrate the main results.

### Similar content being viewed by others

## References

R. P. Agarwal, D. O’Regan, and S. H. Saker, “Oscillation criteria for second-order nonlinear neutral delay dynamic equations,”

*J. Math. Anal. Appl.*,**300**, 203–217 (2004).R. P. Agarwal, D. O’Regan, and S. H. Saker, “Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales,”

*Appl. Anal.*,**86**, 1–17 (2007).R. P. Agarwal, D. O’Regan, and S. H. Saker, “Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales,”

*Acta Math. Sinica*,**24**, 1409–1432 (2008).M. Bohner and A. Peterson,

*Dynamic Equations on Time Scales: Introduction with Applications*, Birkhäuser, Boston (2001).M. Bohner and A. Peterson,

*Advances in Dynamic Equations on Time Scales*, Birkhäuser, Boston (2003).S. Hilger, “Analysis on measure chains—a unified approach to continuous and discrete calculus,”

*Results Math.*,**18**, 18–56 (1990).R. M. Mathsen, Q.Wang, and H.Wu, “Oscillation for neutral dynamic functional equations on time scales,”

*J. Different. Equat. Appl.*,**10**, 651–659 (2004).Y. Şahiner, “Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales,”

*Adv. Difference Equat.*,**2006**, 1–9 (2006).V. Kac and P. Cheung,

*Quantum Calculus*, Springer, New York (2001).W. Kelley and A. Peterson,

*Difference Equations: An Introduction with Applications*, Harcourt/Academic Press, San Diego (2001).S. H. Saker, “Oscillation of second-order nonlinear neutral delay dynamic equations on time scales,”

*J. Comput. Appl. Math.*,**177**, 375–387 (2005).S. H. Saker, “Oscillation of second-order neutral delay dynamic equations of Emden–Fowler type,”

*Dynam. Syst. Appl.*,**15**, 629–644 (2006).S. H. Saker, “Oscillation criteria for a certain class of second-order neutral delay dynamic equations,”

*Dynam. Cont. Discr. Impuls. Syst., Ser. B: Appl. Algorithms*(to appear).V. Spedding, “Taming nature’s numbers,”

*New Sci.*, 28–31 (2003).A. K. Tirpathy, “Some oscillation results for second-order nonlinear dynamic equations of neutral type,”

*Nonlinear Anal.*, doi:10.1016/j.na.2009.02046 (2009).H.-W. Wu, R.-K. Zhuang, and R. M. Mathsen, “Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations,”

*Appl. Math.*,**178**, 231–331 (2006).

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

Published in Neliniini Kolyvannya, Vol. 13, No. 3, pp. 379–399, July–September, 2010.

## Rights and permissions

## About this article

### Cite this article

Saker, S.H. Oscillation criteria for a second-order quasilinear neutral functional dynamic equation on time scales.
*Nonlinear Oscill* **13**, 407–428 (2011). https://doi.org/10.1007/s11072-011-0122-8

Received:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s11072-011-0122-8