Abstract
Recently, memristive Hopfield neural networks (MHNNs) have received considerable attention in designing chaotic systems with complex dynamics because of their distinctive connectivity structures and memory properties. However, the literature rarely reports on the integration of discrete memristors with HNNs and the subsequent observation of their dynamical behavior. Based on the synaptic plasticity of memristors, this paper constructs a novel three-dimensional discrete memristive Hopfield neural network (3DDMHNN) model based on discrete memristor simulating self-synapse. Such a new neural network can exhibit chaotic attractors with different topological structures. Analysis reveals that the phase diagrams produced by the 3DDMHNN display several phenomena, including the formation of multi-ringlike volumes, attractor growth, hyperchaotic attractors, periodic offset behavior, and infinite coexistence of initial value offset behavior. To confirm the physical existence and feasibility of the 3DDMHNN, a simulation circuit incorporating a discrete sinusoidal memristor and the 3DDMHNN was designed. Meanwhile, the 3DDMHNN is realized based on a DSP hardware platform. With the pseudo-randomness of the 3DDMHNN confirmed by relevant tests, the potential directions for its future applications have been significantly broadened.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availibility
Enquiries about data availability should be directed to the authors.
References
Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337
Strukov, D.B., Snider, G.S., Stewart, D.R., Stanley Williams, R.: The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932
Minati, L., Gambuzza, L.V., Thio, W.J., Sprott, J.C., Frasca, M.: A chaotic circuit based on a physical memristor. Chaos Solitons Fractals 138, 109990 (2020). https://doi.org/10.1016/j.chaos.2020.109990
Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurcat. Chaos 20(05), 1335–1350 (2010). https://doi.org/10.1142/s0218127410026514
Abbas, H., Abbas, Y., Truong, S.N., Min, K.-S., Park, M.R., Cho, J., Yoon, T.-S., Kang, C.J.: A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications. Semicond. Sci. Technol. 32(6), 065014 (2017). https://doi.org/10.1088/1361-6641/aa6a3a
Guo, T., Pan, K., Jiao, Y., Sun, B., Cheng, D., Mills, J.P., Chen, Z., Zhao, X., Wei, L., Norman Zhou, Y., et al.: Versatile memristor for memory and neuromorphic computing. Nanoscale Horizons 7(3), 299–310 (2022). https://doi.org/10.1039/d1nh00481f
Chavan, A., Sinha, P., Raj, S.: In-memory machine learning using hybrid decision trees and memristor crossbars. In: 2023 IEEE International Symposium on Smart Electronic Systems (iSES), pp. 248–253. IEEE (2023). https://doi.org/10.1109/ises58672.2023.00058
Cao, Z., Sun, B., Zhou, G., Mao, S.S., Zhu, S.H., Zhang, J., Ke, C., Zhao, Y., Shao, J.: Memristor-based neural networks: a bridge from device to artificial intelligence. Nanoscale Horizons (2023). https://doi.org/10.1039/d2nh00536k
Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J.J., Qian, H.: Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
Zhang, W., Yao, P., Gao, B., Liu, Q., Dong, W., Zhang, Q., Li, Y., Qin, Q., Li, J., Zhu, Z., et al.: Edge learning using a fully integrated neuro-inspired memristor chip. Science 381(6663), 1205–1211 (2023). https://doi.org/10.1126/science.ade3483
Peng, Y., Sun, K., He, S.: A discrete memristor model and its application in hénon map. Chaos Solitons Fractals 137, 109873 (2020). https://doi.org/10.1016/j.chaos.2020.109873
Bao, B.-C., Li, H., Huagan, W., Zhang, X., Chen, M.: Hyperchaos in a second-order discrete memristor-based map model. Electron. Lett. 56(15), 769–770 (2020). https://doi.org/10.1049/el.2020.1172
Li, H., Hua, Z., Bao, H., Zhu, L., Chen, M., Bao, B.: Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Industr. Electron. 68(10), 9931–9940 (2020). https://doi.org/10.1109/tie.2020.3022539
Bao, H., Hua, Z., Li, H., Chen, M., Bao, B.: Discrete memristor hyperchaotic maps. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4534–4544 (2021). https://doi.org/10.1109/TCSI.2021.3082895
Liu, X., Mou, J., Zhang, Y., Cao, Y.: A new hyperchaotic map based on discrete memristor and meminductor: dynamics analysis, encryption application, and dsp implementation. IEEE Trans. Industr. Electron. (2023). https://doi.org/10.1109/tie.2023.3281687
Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ.-Sci. A 24(2), 109–129 (2023). https://doi.org/10.1631/jzus.a2200469
Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017). https://doi.org/10.1007/s11071-017-3565-3
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.2554
Tang, D., Wang, C., Lin, H., Fei, Yu.: Dynamics analysis and hardware implementation of multi-scroll hyperchaotic hidden attractors based on locally active memristive hopfield neural network. Nonlinear Dyn. 112(2), 1511–1527 (2024). https://doi.org/10.1007/s11071-023-09128-9
Bao, H., Chen, Z., Ma, J., Quan, X., Bao, B.: Planar homogeneous coexisting hyperchaos in bimemristor cyclic hopfield neural network. IEEE Trans. Industr. Electron. (2024). https://doi.org/10.1109/tie.2024.3387058
Ding, D., Xiao, H., Yang, Z., Luo, H., Yongbing, H., Zhang, X., Liu, Y.: Coexisting multi-stability of hopfield neural network based on coupled fractional-order locally active memristor and its application in image encryption. Nonlinear Dyn. 108(4), 4433–4458 (2022). https://doi.org/10.1007/s11071-021-06586-1
Yao, W., Liu, J., Sun, Y., Zhang, J., Fei, Yu., Cui, L., Lin, H.: Dynamics analysis and image encryption application of hopfield neural network with a novel multistable and highly tunable memristor. Nonlinear Dyn. 112(1), 693–708 (2024). https://doi.org/10.1007/s11071-023-09041-1
Huang, L.-L., Zhang, Y., Xiang, J.-H., Liu, J.: Extreme multistability in a hopfield neural network based on two biological neuronal systems. IEEE Trans. Circuits Syst. II Express Briefs 69(11), 4568–4572 (2022). https://doi.org/10.1109/TCSII.2022.3183340
Zhenhua, H., Wang, C.: Hopfield neural network with multi-scroll attractors and application in image encryption. Multimedia Tools Appl. 83(1), 97–117 (2024). https://doi.org/10.1007/s11042-023-15670-w
Li, J., Wang, C., Deng, Q.: Symmetric multi-double-scroll attractors in hopfield neural network under pulse controlled memristor. Nonlinear Dyn. 112(16), 14463–14477 (2024). https://doi.org/10.1007/s11071-024-09791-6
Zhang, S., Zheng, J., Wang, X., Zeng, Z., He, S.: Initial offset boosting coexisting attractors in memristive multi-double-scroll hopfield neural network. Nonlinear Dyn. 102, 2821–2841 (2020). https://doi.org/10.1007/s11071-020-06072-w
Leng, X., Wang, X., Zeng, Z.: Memristive hopfield neural network with multiple controllable nonlinear offset behaviors and its medical encryption application. Chaos Solitons Fractals 183, 114944 (2024). https://doi.org/10.1016/j.chaos.2024.114944
Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020). https://doi.org/10.1007/s11071-019-05408-5
Njitacke, Z.T., Matze, C.L., Tsotsop, M.F.: Jacques Kengne. Remerging feigenbaum trees, coexisting behaviors and bursting oscillations in a novel 3d generalized hopfield neural network. Neural Process. Lett. 52(1), 267–289 (2020). https://doi.org/10.1007/s11063-020-10264-1
Lin, H., Wang, C., Fei, Yu., Sun, J., Sichun, D., Deng, Z., Deng, Q.: A review of chaotic systems based on memristive hopfield neural networks. Mathematics 11(6), 1369 (2023). https://doi.org/10.3390/math11061369
Shen, H., Fei, Yu., Kong, X., Cai, S., Mokbel, A.A.M., Wang, C., Cai, S.: Dynamics study on the effect of memristive autapse distribution on hopfield neural network. Chaos 32(8), 1 (2022). https://doi.org/10.1063/5.0099466
Wan, Q., Chen, S., Yang, Q., Liu, J., Sun, K.: Grid multi-scroll attractors in memristive hopfield neural network under pulse current stimulation and multi-piecewise memristor. Nonlinear Dyn. 111(19), 18505–18521 (2023). https://doi.org/10.1007/s11071-023-08834-8
Wan, Q., Li, F., Chen, S., Yang, Q.: Symmetric multi-scroll attractors in magnetized hopfield neural network under pulse controlled memristor and pulse current stimulation. Chaos Solitons Fractals 169, 113259 (2023). https://doi.org/10.1016/j.chaos.2023.113259
Chen, C., Min, F., Zhang, Y., Bao, B.: Memristive electromagnetic induction effects on hopfield neural network. Nonlinear Dyn. 106, 2559–2576 (2021). https://doi.org/10.1007/s11071-021-06910-5
FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1(6), 445–466 (1961). https://doi.org/10.1016/s0006-3495(61)86902-6
Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982). https://doi.org/10.1038/296162a0
Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015). https://doi.org/10.1007/s11431-015-5961-6
Wang, Y., Wang, G., Shen, Y., Ho-Ching Iu, H.: A memristor neural network using synaptic plasticity and its associative memory. Circuits Syst. Signal Process. 39(7), 3496–3511 (2020). https://doi.org/10.1007/s00034-019-01330-8
Liu, J., Li, Z., Tang, Y., Wei, H., Jun, W.: 3d convolutional neural network based on memristor for video recognition. Pattern Recogn. Lett. 130, 116–124 (2020). https://doi.org/10.1016/j.patrec.2018.12.005
Mingzhen, H., Huang, X., Shi, Q., Yuan, F., Wang, Z.: Design and analysis of a memristive hopfield switching neural network and application to privacy protection. Nonlinear Dyn. (2024). https://doi.org/10.1007/s11071-024-09696-4
Rulkov, N.F.: Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86(1), 183 (2001). https://doi.org/10.1103/physrevlett.86.183
Kuva, S.M., Lima, G.F., Kinouchi, O., Tragtenberg, M.H.R., Roque, A.C.: A minimal model for excitable and bursting elements. Neurocomputing 38–40, 255–261 (2001). https://doi.org/10.1016/s0925-2312(01)00376-9
Chialvo, D.R.: Generic excitable dynamics on a two-dimensional map. Chaos Solitons Fractals 5(3), 461–479 (1995). https://doi.org/10.1016/0960-0779(93)e0056-h
Yanmei, L., Wang, C., Deng, Q.: Rulkov neural network coupled with discrete memristors. Netw. Comput. Neural Syst. 33(3–4), 214–232 (2022). https://doi.org/10.1080/0954898x.2022.2131921
Hongli Cao, Yu., Wang, S.B., Cao, Y., Mou, J.: A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, dynamical analysis, DSP implementation and its application. Chaos Solitons Fractals 179, 114466 (2024). https://doi.org/10.1016/j.chaos.2024.114466
Ma, M., Yaping, L., Li, Z., Sun, Y., Wang, C.: Multistability and phase synchronization of Rulkov neurons coupled with a locally active discrete memristor. Fractal Fractional 7(1), 82 (2023). https://doi.org/10.3390/fractalfract7010082
Ma, M., Xiong, K., Li, Z., Sun, Y.: Dynamic behavior analysis and synchronization of memristor-coupled heterogeneous discrete neural networks. Mathematics 11(2), 375 (2023). https://doi.org/10.3390/math11020375
Li, K., Bao, B., Ma, J., Chen, M., Bao, H.: Synchronization transitions in a discrete memristor-coupled bi-neuron model. Chaos Solitons Fractals 165, 112861 (2022). https://doi.org/10.1016/j.chaos.2022.112861
He, W., Cao, J.: Stability and bifurcation of a class of discrete-time neural networks. Appl. Math. Model. 31(10), 2111–2122 (2007). https://doi.org/10.1007/s11063-013-9329-2
Eskandari, Z., Alidousti, J., Avazzadeh, Z., Ghaziani, R.K.: Dynamics and bifurcations of a discrete time neural network with self connection. Eur. J. Control. 66, 100642 (2022). https://doi.org/10.1016/j.ejcon.2022.100642
Bao, B., Tang, H., Yuanhui, S., Bao, H., Chen, M., Quan, X.: Two-dimensional discrete bi-neuron hopfield neural network with polyhedral hyperchaos. IEEE Trans. Circuits Syst. I Regul. Pap. (2024). https://doi.org/10.1109/TCSI.2024.3382259
Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015). https://doi.org/10.13164/re.2015.0319
Song, X., Wang, H., Chen, Y.: Autapse-induced firing patterns transitions in the Morris-Lecar neuron model. Nonlinear Dyn. 96, 2341–2350 (2019). https://doi.org/10.1007/s11071-019-04925-7
Ying, X., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7(1), 43452 (2017). https://doi.org/10.1038/srep43452
Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020). https://doi.org/10.1007/s11071-020-05687-3
Funding
This research is supported by Heilongjiang Province’s Basic Research Business Expenditure for Provincial Universities 2023-KYYWF-1435.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wei, Y., Du, B., Wang, X. et al. Multi-ringlike volumes and offset of Hopfield neural networks based on a discrete memristive self-synapse. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-10329-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11071-024-10329-z