Skip to main content
Log in

Multi-ringlike volumes and offset of Hopfield neural networks based on a discrete memristive self-synapse

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, memristive Hopfield neural networks (MHNNs) have received considerable attention in designing chaotic systems with complex dynamics because of their distinctive connectivity structures and memory properties. However, the literature rarely reports on the integration of discrete memristors with HNNs and the subsequent observation of their dynamical behavior. Based on the synaptic plasticity of memristors, this paper constructs a novel three-dimensional discrete memristive Hopfield neural network (3DDMHNN) model based on discrete memristor simulating self-synapse. Such a new neural network can exhibit chaotic attractors with different topological structures. Analysis reveals that the phase diagrams produced by the 3DDMHNN display several phenomena, including the formation of multi-ringlike volumes, attractor growth, hyperchaotic attractors, periodic offset behavior, and infinite coexistence of initial value offset behavior. To confirm the physical existence and feasibility of the 3DDMHNN, a simulation circuit incorporating a discrete sinusoidal memristor and the 3DDMHNN was designed. Meanwhile, the 3DDMHNN is realized based on a DSP hardware platform. With the pseudo-randomness of the 3DDMHNN confirmed by relevant tests, the potential directions for its future applications have been significantly broadened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Stanley Williams, R.: The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  3. Minati, L., Gambuzza, L.V., Thio, W.J., Sprott, J.C., Frasca, M.: A chaotic circuit based on a physical memristor. Chaos Solitons Fractals 138, 109990 (2020). https://doi.org/10.1016/j.chaos.2020.109990

    Article  MathSciNet  Google Scholar 

  4. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurcat. Chaos 20(05), 1335–1350 (2010). https://doi.org/10.1142/s0218127410026514

    Article  Google Scholar 

  5. Abbas, H., Abbas, Y., Truong, S.N., Min, K.-S., Park, M.R., Cho, J., Yoon, T.-S., Kang, C.J.: A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications. Semicond. Sci. Technol. 32(6), 065014 (2017). https://doi.org/10.1088/1361-6641/aa6a3a

    Article  Google Scholar 

  6. Guo, T., Pan, K., Jiao, Y., Sun, B., Cheng, D., Mills, J.P., Chen, Z., Zhao, X., Wei, L., Norman Zhou, Y., et al.: Versatile memristor for memory and neuromorphic computing. Nanoscale Horizons 7(3), 299–310 (2022). https://doi.org/10.1039/d1nh00481f

    Article  Google Scholar 

  7. Chavan, A., Sinha, P., Raj, S.: In-memory machine learning using hybrid decision trees and memristor crossbars. In: 2023 IEEE International Symposium on Smart Electronic Systems (iSES), pp. 248–253. IEEE (2023). https://doi.org/10.1109/ises58672.2023.00058

  8. Cao, Z., Sun, B., Zhou, G., Mao, S.S., Zhu, S.H., Zhang, J., Ke, C., Zhao, Y., Shao, J.: Memristor-based neural networks: a bridge from device to artificial intelligence. Nanoscale Horizons (2023). https://doi.org/10.1039/d2nh00536k

    Article  Google Scholar 

  9. Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J.J., Qian, H.: Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4

    Article  Google Scholar 

  10. Zhang, W., Yao, P., Gao, B., Liu, Q., Dong, W., Zhang, Q., Li, Y., Qin, Q., Li, J., Zhu, Z., et al.: Edge learning using a fully integrated neuro-inspired memristor chip. Science 381(6663), 1205–1211 (2023). https://doi.org/10.1126/science.ade3483

    Article  Google Scholar 

  11. Peng, Y., Sun, K., He, S.: A discrete memristor model and its application in hénon map. Chaos Solitons Fractals 137, 109873 (2020). https://doi.org/10.1016/j.chaos.2020.109873

    Article  MathSciNet  Google Scholar 

  12. Bao, B.-C., Li, H., Huagan, W., Zhang, X., Chen, M.: Hyperchaos in a second-order discrete memristor-based map model. Electron. Lett. 56(15), 769–770 (2020). https://doi.org/10.1049/el.2020.1172

    Article  Google Scholar 

  13. Li, H., Hua, Z., Bao, H., Zhu, L., Chen, M., Bao, B.: Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Industr. Electron. 68(10), 9931–9940 (2020). https://doi.org/10.1109/tie.2020.3022539

    Article  Google Scholar 

  14. Bao, H., Hua, Z., Li, H., Chen, M., Bao, B.: Discrete memristor hyperchaotic maps. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4534–4544 (2021). https://doi.org/10.1109/TCSI.2021.3082895

    Article  Google Scholar 

  15. Liu, X., Mou, J., Zhang, Y., Cao, Y.: A new hyperchaotic map based on discrete memristor and meminductor: dynamics analysis, encryption application, and dsp implementation. IEEE Trans. Industr. Electron. (2023). https://doi.org/10.1109/tie.2023.3281687

    Article  Google Scholar 

  16. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ.-Sci. A 24(2), 109–129 (2023). https://doi.org/10.1631/jzus.a2200469

    Article  Google Scholar 

  17. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017). https://doi.org/10.1007/s11071-017-3565-3

    Article  MathSciNet  Google Scholar 

  18. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.2554

    Article  MathSciNet  Google Scholar 

  19. Tang, D., Wang, C., Lin, H., Fei, Yu.: Dynamics analysis and hardware implementation of multi-scroll hyperchaotic hidden attractors based on locally active memristive hopfield neural network. Nonlinear Dyn. 112(2), 1511–1527 (2024). https://doi.org/10.1007/s11071-023-09128-9

    Article  Google Scholar 

  20. Bao, H., Chen, Z., Ma, J., Quan, X., Bao, B.: Planar homogeneous coexisting hyperchaos in bimemristor cyclic hopfield neural network. IEEE Trans. Industr. Electron. (2024). https://doi.org/10.1109/tie.2024.3387058

    Article  Google Scholar 

  21. Ding, D., Xiao, H., Yang, Z., Luo, H., Yongbing, H., Zhang, X., Liu, Y.: Coexisting multi-stability of hopfield neural network based on coupled fractional-order locally active memristor and its application in image encryption. Nonlinear Dyn. 108(4), 4433–4458 (2022). https://doi.org/10.1007/s11071-021-06586-1

    Article  Google Scholar 

  22. Yao, W., Liu, J., Sun, Y., Zhang, J., Fei, Yu., Cui, L., Lin, H.: Dynamics analysis and image encryption application of hopfield neural network with a novel multistable and highly tunable memristor. Nonlinear Dyn. 112(1), 693–708 (2024). https://doi.org/10.1007/s11071-023-09041-1

    Article  Google Scholar 

  23. Huang, L.-L., Zhang, Y., Xiang, J.-H., Liu, J.: Extreme multistability in a hopfield neural network based on two biological neuronal systems. IEEE Trans. Circuits Syst. II Express Briefs 69(11), 4568–4572 (2022). https://doi.org/10.1109/TCSII.2022.3183340

    Article  Google Scholar 

  24. Zhenhua, H., Wang, C.: Hopfield neural network with multi-scroll attractors and application in image encryption. Multimedia Tools Appl. 83(1), 97–117 (2024). https://doi.org/10.1007/s11042-023-15670-w

    Article  Google Scholar 

  25. Li, J., Wang, C., Deng, Q.: Symmetric multi-double-scroll attractors in hopfield neural network under pulse controlled memristor. Nonlinear Dyn. 112(16), 14463–14477 (2024). https://doi.org/10.1007/s11071-024-09791-6

    Article  Google Scholar 

  26. Zhang, S., Zheng, J., Wang, X., Zeng, Z., He, S.: Initial offset boosting coexisting attractors in memristive multi-double-scroll hopfield neural network. Nonlinear Dyn. 102, 2821–2841 (2020). https://doi.org/10.1007/s11071-020-06072-w

    Article  Google Scholar 

  27. Leng, X., Wang, X., Zeng, Z.: Memristive hopfield neural network with multiple controllable nonlinear offset behaviors and its medical encryption application. Chaos Solitons Fractals 183, 114944 (2024). https://doi.org/10.1016/j.chaos.2024.114944

    Article  MathSciNet  Google Scholar 

  28. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020). https://doi.org/10.1007/s11071-019-05408-5

    Article  Google Scholar 

  29. Njitacke, Z.T., Matze, C.L., Tsotsop, M.F.: Jacques Kengne. Remerging feigenbaum trees, coexisting behaviors and bursting oscillations in a novel 3d generalized hopfield neural network. Neural Process. Lett. 52(1), 267–289 (2020). https://doi.org/10.1007/s11063-020-10264-1

    Article  Google Scholar 

  30. Lin, H., Wang, C., Fei, Yu., Sun, J., Sichun, D., Deng, Z., Deng, Q.: A review of chaotic systems based on memristive hopfield neural networks. Mathematics 11(6), 1369 (2023). https://doi.org/10.3390/math11061369

    Article  Google Scholar 

  31. Shen, H., Fei, Yu., Kong, X., Cai, S., Mokbel, A.A.M., Wang, C., Cai, S.: Dynamics study on the effect of memristive autapse distribution on hopfield neural network. Chaos 32(8), 1 (2022). https://doi.org/10.1063/5.0099466

    Article  MathSciNet  Google Scholar 

  32. Wan, Q., Chen, S., Yang, Q., Liu, J., Sun, K.: Grid multi-scroll attractors in memristive hopfield neural network under pulse current stimulation and multi-piecewise memristor. Nonlinear Dyn. 111(19), 18505–18521 (2023). https://doi.org/10.1007/s11071-023-08834-8

    Article  Google Scholar 

  33. Wan, Q., Li, F., Chen, S., Yang, Q.: Symmetric multi-scroll attractors in magnetized hopfield neural network under pulse controlled memristor and pulse current stimulation. Chaos Solitons Fractals 169, 113259 (2023). https://doi.org/10.1016/j.chaos.2023.113259

    Article  Google Scholar 

  34. Chen, C., Min, F., Zhang, Y., Bao, B.: Memristive electromagnetic induction effects on hopfield neural network. Nonlinear Dyn. 106, 2559–2576 (2021). https://doi.org/10.1007/s11071-021-06910-5

    Article  Google Scholar 

  35. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1(6), 445–466 (1961). https://doi.org/10.1016/s0006-3495(61)86902-6

    Article  Google Scholar 

  36. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982). https://doi.org/10.1038/296162a0

    Article  Google Scholar 

  37. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015). https://doi.org/10.1007/s11431-015-5961-6

    Article  Google Scholar 

  38. Wang, Y., Wang, G., Shen, Y., Ho-Ching Iu, H.: A memristor neural network using synaptic plasticity and its associative memory. Circuits Syst. Signal Process. 39(7), 3496–3511 (2020). https://doi.org/10.1007/s00034-019-01330-8

    Article  Google Scholar 

  39. Liu, J., Li, Z., Tang, Y., Wei, H., Jun, W.: 3d convolutional neural network based on memristor for video recognition. Pattern Recogn. Lett. 130, 116–124 (2020). https://doi.org/10.1016/j.patrec.2018.12.005

    Article  Google Scholar 

  40. Mingzhen, H., Huang, X., Shi, Q., Yuan, F., Wang, Z.: Design and analysis of a memristive hopfield switching neural network and application to privacy protection. Nonlinear Dyn. (2024). https://doi.org/10.1007/s11071-024-09696-4

    Article  Google Scholar 

  41. Rulkov, N.F.: Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86(1), 183 (2001). https://doi.org/10.1103/physrevlett.86.183

    Article  Google Scholar 

  42. Kuva, S.M., Lima, G.F., Kinouchi, O., Tragtenberg, M.H.R., Roque, A.C.: A minimal model for excitable and bursting elements. Neurocomputing 38–40, 255–261 (2001). https://doi.org/10.1016/s0925-2312(01)00376-9

    Article  Google Scholar 

  43. Chialvo, D.R.: Generic excitable dynamics on a two-dimensional map. Chaos Solitons Fractals 5(3), 461–479 (1995). https://doi.org/10.1016/0960-0779(93)e0056-h

    Article  MathSciNet  Google Scholar 

  44. Yanmei, L., Wang, C., Deng, Q.: Rulkov neural network coupled with discrete memristors. Netw. Comput. Neural Syst. 33(3–4), 214–232 (2022). https://doi.org/10.1080/0954898x.2022.2131921

    Article  Google Scholar 

  45. Hongli Cao, Yu., Wang, S.B., Cao, Y., Mou, J.: A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, dynamical analysis, DSP implementation and its application. Chaos Solitons Fractals 179, 114466 (2024). https://doi.org/10.1016/j.chaos.2024.114466

    Article  MathSciNet  Google Scholar 

  46. Ma, M., Yaping, L., Li, Z., Sun, Y., Wang, C.: Multistability and phase synchronization of Rulkov neurons coupled with a locally active discrete memristor. Fractal Fractional 7(1), 82 (2023). https://doi.org/10.3390/fractalfract7010082

  47. Ma, M., Xiong, K., Li, Z., Sun, Y.: Dynamic behavior analysis and synchronization of memristor-coupled heterogeneous discrete neural networks. Mathematics 11(2), 375 (2023). https://doi.org/10.3390/math11020375

    Article  Google Scholar 

  48. Li, K., Bao, B., Ma, J., Chen, M., Bao, H.: Synchronization transitions in a discrete memristor-coupled bi-neuron model. Chaos Solitons Fractals 165, 112861 (2022). https://doi.org/10.1016/j.chaos.2022.112861

    Article  Google Scholar 

  49. He, W., Cao, J.: Stability and bifurcation of a class of discrete-time neural networks. Appl. Math. Model. 31(10), 2111–2122 (2007). https://doi.org/10.1007/s11063-013-9329-2

    Article  Google Scholar 

  50. Eskandari, Z., Alidousti, J., Avazzadeh, Z., Ghaziani, R.K.: Dynamics and bifurcations of a discrete time neural network with self connection. Eur. J. Control. 66, 100642 (2022). https://doi.org/10.1016/j.ejcon.2022.100642

    Article  MathSciNet  Google Scholar 

  51. Bao, B., Tang, H., Yuanhui, S., Bao, H., Chen, M., Quan, X.: Two-dimensional discrete bi-neuron hopfield neural network with polyhedral hyperchaos. IEEE Trans. Circuits Syst. I Regul. Pap. (2024). https://doi.org/10.1109/TCSI.2024.3382259

    Article  Google Scholar 

  52. Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015). https://doi.org/10.13164/re.2015.0319

    Article  Google Scholar 

  53. Song, X., Wang, H., Chen, Y.: Autapse-induced firing patterns transitions in the Morris-Lecar neuron model. Nonlinear Dyn. 96, 2341–2350 (2019). https://doi.org/10.1007/s11071-019-04925-7

    Article  Google Scholar 

  54. Ying, X., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7(1), 43452 (2017). https://doi.org/10.1038/srep43452

    Article  Google Scholar 

  55. Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020). https://doi.org/10.1007/s11071-020-05687-3

    Article  Google Scholar 

Download references

Funding

This research is supported by Heilongjiang Province’s Basic Research Business Expenditure for Provincial Universities 2023-KYYWF-1435.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxiang Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Du, B., Wang, X. et al. Multi-ringlike volumes and offset of Hopfield neural networks based on a discrete memristive self-synapse. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-10329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-10329-z

Keywords

Navigation