Skip to main content
Log in

A secure and adaptive block-based image encryption: a novel high-speed approach

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the era of digital communication, ensuring the security of transmitted images is paramount, particularly for online and real-time applications where data privacy and integrity are essential. This paper introduces a novel image encryption algorithm designed to address the rigorous demands of such contexts, prioritizing both security and speed. Employing SHA-512 as the secret key and leveraging block-based encryption techniques, the proposed algorithm offers security and adaptability to various image sizes and aspect ratios, catering to the diverse needs of modern applications. The algorithm enhances security by incorporating chaotic systems for key generation and permutation while maintaining high-speed encryption and decryption processes. Performance evaluation demonstrates the algorithm’s resilience against common cryptographic attacks, underscoring its effectiveness in safeguarding sensitive image data in dynamic online and real-time contexts. Notably, the algorithm achieves encryption speeds of up to 438.49 Mbps for images sized 1080 × 1920, with an encryption time of just 0.108 s as well as 0.26 s for an image sized 2611 × 1800. For a Lena color image sized 512 × 512, the proposed algorithm results in an entropy of 7.999252, an NPCR value of 99.6365, a UACI value of 33.4542 and encryption time of 0.0254 s. With adaptability to diverse image characteristics and a robust defense against potential threats, the proposed algorithm emerges as a promising contender for ensuring the integrity and confidentiality of digital images in today’s interconnected world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 4
Algorithm 5
Algorithm 6
Algorithm 7
Algorithm 8
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets and pseudo-code of the current study’s encryption and decryption are available from the corresponding author upon reasonable request.

References

  1. Fouda, J.S.A.E., Effa, J.Y., Sabat, S.L., Ali, M.: A fast chaotic block cipher for image encryption. Commun. Nonlinear Sci. Numer. Simul. 19(3), 578–588 (2014). https://doi.org/10.1016/j.cnsns.2013.07.016

    Article  MathSciNet  Google Scholar 

  2. Enayatifar, R., Guimarães, F.G., Siarry, P.: Index-based permutation-diffusion in multiple-image encryption using DNA sequence. Opt. Lasers Eng. 115, 131–140 (2019). https://doi.org/10.1016/j.optlaseng.2018.11.017

    Article  Google Scholar 

  3. Liu, L., Lei, Y., Wang, D.: A fast chaotic image encryption scheme with simultaneous permutation-diffusion operation. IEEE Access 8, 27361–27374 (2020). https://doi.org/10.1109/ACCESS.2020.2971759

    Article  Google Scholar 

  4. Talhaoui, M.Z., Wang, X., Midoun, M.A.: Fast image encryption algorithm with high security level using the Bülban chaotic map. J. Real-Time Image Proc. 18, 85–98 (2021). https://doi.org/10.1007/s11554-020-00948-1

    Article  Google Scholar 

  5. Wei, D., Jiang, M.: A fast image encryption algorithm based on parallel compressive sensing and DNA sequence. Optik 238, 166748 (2021). https://doi.org/10.1016/j.ijleo.2021.166748

    Article  Google Scholar 

  6. Heucheun Yepdia, L.M., Tiedeu, A., Kom, G.: A robust and fast image encryption scheme based on a mixing technique. Secur. Commun. Netw. 2021, 1–17 (2021). https://doi.org/10.1155/2021/6615708

    Article  Google Scholar 

  7. Zhao, H., Xie, S., Zhang, J., Wu, T.: A dynamic block image encryption using variable-length secret key and modified Henon map. Optik 230, 166307 (2021). https://doi.org/10.1016/j.ijleo.2021.166307

    Article  Google Scholar 

  8. Gao, X., Mou, J., Xiong, L., Sha, Y., Yan, H., Cao, Y.: A fast and efficient multiple images encryption based on single-channel encryption and chaotic system. Nonlinear Dyn. 108(1), 613–636 (2022). https://doi.org/10.1007/s11071-021-07192-7

    Article  Google Scholar 

  9. Zhang, X., Gong, Z.: Color image encryption algorithm based on 3D Zigzag transformation and view planes. Multimed. Tools Appl. (2022). https://doi.org/10.1007/s11042-022-13003-x

    Article  Google Scholar 

  10. Chaudhary, N., Shahi, T.B., Neupane, A.: Secure image encryption using chaotic, hybrid chaotic and block cipher approach. J. Imag. 8(6), 167 (2022). https://doi.org/10.3390/jimaging806016

    Article  Google Scholar 

  11. Demirtaş, M.: A new RGB color image encryption scheme based on cross-channel pixel and bit scrambling using chaos. Optik 265, 169430 (2022). https://doi.org/10.1016/j.ijleo.2022.169430

    Article  Google Scholar 

  12. Rezaei, B., Ghanbari, H., Enayatifar, R.: An image encryption approach using tuned Henon chaotic map and evolutionary algorithm. Nonlinear Dyn. 111, 9629–9647 (2023). https://doi.org/10.1007/s11071-023-08331-y

    Article  Google Scholar 

  13. Zhu, S., Deng, X., Zhang, W., Zhu, C.: Secure image encryption scheme based on a new robust chaotic map and strong S-box”. Math. Comput. Simul 207, 322–346 (2023). https://doi.org/10.1016/j.matcom.2022.12.025

    Article  MathSciNet  Google Scholar 

  14. Zahid, A.H., Ahmad, M., Alkhayyat, A., Hassan, M.T., Manzoor, A., Farhan, A.K.: Efficient dynamic s-box generation using linear trigonometric transformation for security applications. IEEE Access 9, 98460–98475 (2021). https://doi.org/10.1109/ACCESS.2021.3095618

    Article  Google Scholar 

  15. Nasry, H., Abdallah, A.A., Farhan, A.K., Ahmed, H.E., El Sobky, W.I.: Multi chaotic system to generate novel s-box for image encryption. J. Phys. Conf. Ser. 2304(1), 12007 (2022). https://doi.org/10.1088/1742-6596/2304/1/012007

    Article  Google Scholar 

  16. Ali, R.S., Akif, O.Z., Jassim, S.A., Farhan, A.K., El-Kenawy, E.-S.M., Ibrahim, A., Ghoneim, M.E., Abdelhamid, A.A.: Enhancement of the CAST block algorithm based on novel s-box for image Encryption. Sensors 22, 21 (2022). https://doi.org/10.3390/s2221852

    Article  Google Scholar 

  17. Natiq, H., Al-Saidi, N.M.G., Obaiys, S.J., Mahdi, M.N., Farhan, A.K.: Image encryption based on local fractional derivative complex logistic map. Symmetry. 14(9), 1874 (2022). https://doi.org/10.3390/sym14091874

    Article  Google Scholar 

  18. Salman, M.R. and A.K. Farhan.: Color image encryption depend on DNA operation and chaotic system, in 2019 First International Conference of Computer and Applied Sciences (CAS), Baghdad, Iraq, 2019, pp. 267-272, https://doi.org/10.1109/CAS47993.2019.9075458

  19. Rezaei, B., Mobasseri, M., Enayatifar, R.: A secure, efficient and super-fast chaos-based image encryption algorithm for real-time applications. J. Real-Time Image Proc. 20, 30 (2023). https://doi.org/10.1007/s11554-023-01289-5

    Article  Google Scholar 

  20. Chidambaram, N., Thenmozhi, K., Raj, P., Amirtharajan, R.: DNA-chaos governed cryptosystem for cloud-based medical image repository. Clust. Comput. (2024). https://doi.org/10.1007/s10586-024-04391-w

    Article  Google Scholar 

  21. Banu, S.A., Al-Alawi, A.I., Padmaa, M., Priya, P.S., Thanikaiselvan, V., Amirtharajan, R.: Healthcare with datacare—a triangular DNA security. Multimed. Tools Appl. 83(7), 21153–21170 (2024). https://doi.org/10.1007/s11042-023-16303-y

    Article  Google Scholar 

  22. Singh, N., Sinha, A.: Chaos-based secure communication system using logistic map. Opt. Lasers Eng. 48(3), 398–404 (2010). https://doi.org/10.1016/j.optlaseng.2009.10.001

    Article  Google Scholar 

  23. Lloyd, A.L.: The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. J. Theor. Biol. 173(3), 217–230 (1995). https://doi.org/10.1006/jtbi.1995.0058

    Article  Google Scholar 

  24. Rani, M., Agarwal, R.: A new experimental approach to study the stability of logistic map. Chaos Solitons Fractals 41(4), 2062–2066 (2009). https://doi.org/10.1016/j.chaos.2008.08.022

    Article  Google Scholar 

  25. Suneel, M.: Electronic circuit realization of the logistic map. Sadhana 31(1), 69–78 (2006). https://doi.org/10.1007/BF02703801

    Article  Google Scholar 

  26. Arroyo, D., G. Alvarez, and V. Fernandez.: On the inadequacy of the logistic map for cryptographic applications. arXiv preprint arXiv:0805.4355, 2008. https://doi.org/10.48550/arXiv.0805.4355.

  27. Tarasova, V.V., Tarasov, V.E.: Logistic map with memory from economic model. Chaos Solitons Fractals 95, 84–91 (2017). https://doi.org/10.1016/j.chaos.2016.12.012

    Article  MathSciNet  Google Scholar 

  28. Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006). https://doi.org/10.1016/j.imavis.2006.02.021

    Article  Google Scholar 

  29. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963). https://doi.org/10.1175/1520-0469(1963)020%3c0130:DNF%3e2.0.CO;2

    Article  MathSciNet  Google Scholar 

  30. Zhang, Z., Chen, G., Yu, S.: Hyperchaotic signal generation via DSP for efficient perturbations to liquid mixing. Int. J. Circuit Theory Appl. 37(1), 31–41 (2009). https://doi.org/10.1002/cta.470

    Article  Google Scholar 

  31. Kayalvizhi, S., Malarvizhi, S.: A novel encrypted compressive sensing of images based on fractional order hyper chaotic Chen system and DNA operations. Multimed. Tools Appl. 79(5), 3957–3974 (2020). https://doi.org/10.1007/s11042-019-7642-0

    Article  Google Scholar 

  32. Ren, H.-P., Bai, C., Huang, Z.-Z., Grebogi, C.: Secure communication based on hyperchaotic chen system with time-delay. Int. J. Bifurc. Chaos 27(05), 1750076 (2017). https://doi.org/10.1142/S0218127417500766

    Article  MathSciNet  Google Scholar 

  33. Effati, S., Saberi Nik, H., Jajarmi, A.: Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyna. 73(1), 499–508 (2013). https://doi.org/10.1007/s11071-013-0804-0

    Article  MathSciNet  Google Scholar 

  34. Park, J.H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos Solitons Fractals 26(3), 959–964 (2005). https://doi.org/10.1016/j.chaos.2005.02.002

    Article  MathSciNet  Google Scholar 

  35. Yan, Z.: Controlling hyperchaos in the new hyperchaotic Chen system. Appl. Math. Comput. 168(2), 1239–1250 (2005). https://doi.org/10.1016/j.amc.2004.10.016

    Article  MathSciNet  Google Scholar 

  36. Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013). https://doi.org/10.1016/j.ins.2012.07.049

    Article  MathSciNet  Google Scholar 

  37. Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscipl. J. Sci. Technol. J. Selected Areas Telecommun. (JSAT) 1(2), 31–38 (2011)

    Google Scholar 

  38. CPU Benchmark: https://www.cpubenchmark.net/singleCompare.php

  39. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006). https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  Google Scholar 

  40. Zhang, X., Ye, R.: A novel RGB image encryption algorithm based on DNA sequences and chaos. Multimed. Tools Appl. 80(6), 8809–8833 (2021). https://doi.org/10.1007/s11042-020-09465-6

    Article  Google Scholar 

  41. Boriga, R.E., Dăscălescu, A.C., Diaconu, A.V.: A new fast image encryption scheme based on 2D chaotic maps. IAENG Int. J. Comput. Sci. 41(4), 249–258 (2014)

    Google Scholar 

  42. Yousif, S.F., Abboud, A.J., Alhumaima, R.S.: A new image encryption based on bit replacing, chaos and DNA coding techniques. Multimed. Tools Appl. 81(19), 27453–27493 (2022). https://doi.org/10.1007/s11042-022-12762-x

    Article  Google Scholar 

  43. Valandar, M.Y., Barani, M.J., Ayubi, P.: A fast color image encryption technique based on three dimensional chaotic map. Optik 193, 162921 (2019). https://doi.org/10.1016/j.ijleo.2019.06.021

    Article  Google Scholar 

  44. Ge, B., Chen, X., Chen, G., Shen, Z.: Secure and fast image encryption algorithm using hyper-chaos-based key generator and vector operation. IEEE Access 9, 137635–137654 (2021). https://doi.org/10.1109/ACCESS.2021.3118377

    Article  Google Scholar 

  45. Teng, L., Wang, X., Yang, F., Xian, Y.: Color image encryption based on cross 2D hyperchaotic map using combined cycle shift scrambling and selecting diffusion. Nonlinear Dyn. 105(2), 1859–1876 (2021). https://doi.org/10.1007/s11071-021-06663-1

    Article  Google Scholar 

  46. Kang, S.W., Choi, U.S., Cho, S.J.: Fast image encryption algorithm based on (n, m, k)-PCMLCA. Multimed. Tools Appl. 81(1), 1209–1235 (2022). https://doi.org/10.1007/s11042-021-11424-8

    Article  Google Scholar 

  47. Heucheun Yepdia, L.M., Tiedeu, A., Kom, G.: A robust and fast image encryption scheme based on a mixing technique. Secur. Commun. Netw. 2021, 6615708 (2021). https://doi.org/10.1155/2021/6615708

    Article  Google Scholar 

  48. Hanif, M., Abbas, S., Khan, M.A., Iqbal, N., Rehman, Z.U., Saeed, M.A., Mohamed, E.M.: A novel and efficient multiple RGB images cipher based on chaotic system and circular shift operations. IEEE Access 8, 146408–146427 (2020). https://doi.org/10.1109/ACCESS.2020.3015085

    Article  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Zhejiang Province, China, under No. LD24F020002 and partly supported by the National Natural Science Foundation of China under Grant Nos. 62072412, 61902359, 61702148, and 61672468, the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security under Grant AGK2018001, the Program for Youth Innovation in Future Medicine, Chongqing Medical University, No. W0150 and the Natural Science Foundation of Chongqing, China, No. cstc2021jcyjmsxmX0132.

Author information

Authors and Affiliations

Authors

Contributions

A. Prepared the final draft of the manuscript, idea and evaluation B. Funding and Supervision

Corresponding author

Correspondence to Hao Peng.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest concerning this article’s research, authorship, and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Peng, H. A secure and adaptive block-based image encryption: a novel high-speed approach. Nonlinear Dyn 112, 16445–16473 (2024). https://doi.org/10.1007/s11071-024-09870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09870-8

Keywords

Navigation