Skip to main content
Log in

Firing activity in an N-type locally active memristor-based Hodgkin–Huxley circuit

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Hodgkin–Huxley (HH) circuit can reproduce abundant neuronal firing activities, but it is hard to physically implement the HH circuit. To solve this issue, an implementable HH circuit with two N-type locally active memristors (LAMs) to respectively characterize its \({\textrm{Na}}^+\) and \({\textrm{K}}^+\) channels is proposed in this paper. Numerical explorations demonstrate that the N-type LAM-based Hodgkin–Huxley (N-LAM-HH) circuit can effectively generate periodic and chaotic firing activities. Moreover, a PCB-based hardware circuit is physically implemented and experimental measurement is performed. The experimentally captured time-domain waveforms of chaotic and periodic firing activities well confirm the numerical explorations. These verify the feasibility of the LAM in characterizing \({\textrm{Na}}^+\) and \({\textrm{K}}^+\) channels and the availability of the N-LAM-HH circuit in generating firing activities, which can assist us in building the memristor-based neuromorphic hardware and exploring spike-based applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ge, M., Jia, Y., Xu, Y., Yang, L.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91(1), 515–523 (2018)

    Google Scholar 

  2. Foroutannia, A., Ghasemi, M., Parastesh, F., Jafari, S., Perc, M.: Complete dynamical analysis of a neocortical network model. Nonlinear Dyn. 100, 2699–2714 (2020)

    Google Scholar 

  3. Yang, F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos Interdiscip. J. Nonlinear Sci. 33(2), 023110 (2023)

    MathSciNet  Google Scholar 

  4. Palabas, T., Torres, J.J., Perc, M., Uzuntarla, M.: Double stochastic resonance in neuronal dynamics due to astrocytes. Chaos Solitons Fractals 168, 113140 (2023)

    Google Scholar 

  5. Xu, Q., Wang, Y., Iu, H.H.C., Wang, N., Bao, H.: Locally active memristor-based neuromorphic circuit: firing pattern and hardware experiment. IEEE Trans. Circuits Syst. I Regul. Pap. 70(8), 3130–3141 (2023)

    Google Scholar 

  6. Qiao, S., Gao, C., An, X.: Hidden dynamics and control of a Filippov memristive hybrid neuron model. Nonlinear Dyn. 111(11), 10529–10557 (2023)

    Google Scholar 

  7. Bao, H., Yu, X., Xu, Q., Wu, H., Bao, B.: Three-dimensional memristive Morris–Lecar model with magnetic induction effects and its FPGA implementation. Cogn. Neurodyn. 17(4), 1079–1092 (2023)

    Google Scholar 

  8. Yu, D., Wang, G., Li, T., Ding, Q., Jia, Y.: Filtering properties of Hodgkin–Huxley neuron on different time-scale signals. Commun. Nonlinear Sci. Numer. Simul. 117, 106894 (2023)

    MathSciNet  Google Scholar 

  9. Zhou, X., Xu, Y., Wang, G., Jia, Y.: Ionic channel blockage in stochastic Hodgkin–Huxley neuronal model driven by multiple oscillatory signals. Cogn. Neurodyn. 14, 569–578 (2020)

    Google Scholar 

  10. Njitacke, Z.T., Ramadoss, J., Takembo, C.N., Rajagopal, K., Awrejcewicz, J.: An enhanced Fitzhugh–Nagumo neuron circuit, microcontroller-based hardware implementation: light illumination and magnetic field effects on information patterns. Chaos Solitons Fractals 167, 113014 (2023)

    Google Scholar 

  11. Xu, L., Qi, G., Ma, J.: Modeling of memristor-based Hindmarsh–Rose neuron and its dynamical analyses using energy method. Appl. Math. Model. 101, 503–516 (2022)

    MathSciNet  Google Scholar 

  12. Zhang, X., Min, F., Dou, Y., Xu, Y.: Bifurcation analysis of a modified Fitzhugh–Nagumo neuron with electric field. Chaos Solitons Fractals 170, 113415 (2023)

    MathSciNet  Google Scholar 

  13. Sehgal, S., Foulkes, A.: Numerical analysis of subcritical Hopf bifurcations in the two-dimensional Fitzhugh–Nagumo model. Phys. Rev. E 102(1), 012212 (2020)

    MathSciNet  Google Scholar 

  14. Taher, H., Avitabile, D., Desroches, M.: Bursting in a next generation neural mass model with synaptic dynamics: a slow-fast approach. Nonlinear Dyn. 108(4), 4261–4285 (2022)

    Google Scholar 

  15. Manoj, K.M., Tamagawa, H.: Critical analysis of explanations for cellular homeostasis and electrophysiology from murburn perspective. J. Cell. Physiol. 237(1), 421–435 (2022)

    Google Scholar 

  16. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Google Scholar 

  17. Hodgkin, A.L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26(4), 339–409 (1951)

    Google Scholar 

  18. Dawson, J.R., DeMarco, K., Yang, P.C., Bekker, S., Yarov-Yarovoy, V., Clancy, C.E., Vorobyov, I.V.: Elucidating the molecular determinants of pro-arrhythmic proclivities of Beta-blocking drugs. Biophys. J . 118(3), 115a–116a (2020)

    Google Scholar 

  19. Chua, L.: Hodgkin–Huxley equations implies edge of chaos kernel. Jpn. J. Appl. Phys. 61(SM), SM0805 (2022)

    Google Scholar 

  20. Njitacke, Z.T., Takembo, C.N., Koumetio, B.N., Awrejcewicz, J.: Complex dynamics and autapse-modulated information patterns in memristive Wilson neurons. Nonlinear Dyn. 110(3), 2793–2804 (2022)

    Google Scholar 

  21. Fossi, J.T., Deli, V., Njitacke, Z.T., Mendimi, J.M., Kemwoue, F.F., Atangana, J.: Phase synchronization, extreme multistability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse. Nonlinear Dyn. 109(2), 925–942 (2022)

    Google Scholar 

  22. Ascoli, A., Demirkol, A.S., Tetzlaff, R., Chua, L.: Analysis and design of bio-inspired circuits with locally-active memristors. IEEE Trans. Circuits Syst. II Express Briefs 71(3), 1721–1726 (2024)

    Google Scholar 

  23. Jin, P., Wang, G., Liang, Y., Iu, H.H.C., Chua, L.O.: Neuromorphic dynamics of Chua corsage memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4419–4432 (2021)

    Google Scholar 

  24. Ascoli, A., Demirkol, A.S., Tetzlaff, R., Chua, L.: Edge of chaos theory resolves smale paradox. IEEE Trans. Circuits Syst. I Regul. Pap. 69(3), 1252–1265 (2022)

    Google Scholar 

  25. Chua, L., Sbitnev, V., Kim, H.: Neurons are poised near the edge of chaos. Int. J. Bifurc. Chaos 22(04), 1250098 (2012)

    Google Scholar 

  26. Mannan, Z.I., Choi, H., Kim, H.: Chua corsage memristor oscillator via Hopf bifurcation. Int. J. Bifurc. Chaos 26(04), 1630009 (2016)

    MathSciNet  Google Scholar 

  27. Jin, P., Wang, G., Chen, L.: Biphasic action potential and chaos in a symmetrical Chua corsage memristor-based circuit. Chaos Interdiscip. J. Nonlinear Sci. 33(2) (2023)

  28. Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020)

    Google Scholar 

  29. Ascoli, A., Slesazeck, S., Mähne, H., Tetzlaff, R., Mikolajick, T.: Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 62(4), 1165–1174 (2015)

    MathSciNet  Google Scholar 

  30. Weiher, M., Herzig, M., Tetzlaff, R., Ascoli, A., Mikolajick, T., Slesazeck, S.: Pattern formation with locally active S-type NbOx memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 66(7), 2627–2638 (2019)

    Google Scholar 

  31. Liang, Y., Zhu, Q., Wang, G., Nath, S.K., Iu, H.H.C., Nandi, S.K., Elliman, R.G.: Universal dynamics analysis of locally-active memristors and its applications. IEEE Trans. Circuits Syst. I Regul. Pap. 69(3), 1278–1290 (2021)

    Google Scholar 

  32. Liang, Y., Wang, S., Dong, Y., Lu, Z., Wang, G.: Locally-active memristors-based reactance-less oscillator. IEEE Trans. Circuits Syst. II Express Briefs 70(1), 321–325 (2022)

    Google Scholar 

  33. Sah, M.P., Kim, H., Chua, L.O.: Brains are made of memristors. IEEE Circuits Syst. Mag. 14(1), 12–36 (2014)

    Google Scholar 

  34. Li, C., Min, F., Li, C.: Multiple coexisting attractors of the serial-parallel memristor-based chaotic system and its adaptive generalized synchronization. Nonlinear Dyn. 94(4), 2785–2806 (2018)

    Google Scholar 

  35. Shen, H., Yu, F., Wang, C., Sun, J., Cai, S.: Firing mechanism based on single memristive neuron and double memristive coupled neurons. Nonlinear Dyn. 110(4), 3807–3822 (2022)

    Google Scholar 

  36. Xu, Q., Wang, Y., Chen, B., Li, Z., Wang, N.: Firing pattern in a memristive Hodgkin–Huxley circuit: numerical simulation and analog circuit validation. Chaos Solitons Fractals 172, 113627 (2023)

    MathSciNet  Google Scholar 

  37. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    MathSciNet  Google Scholar 

  38. Kong, X., Yu, F., Yao, W., Cai, S., Zhang, J., Lin, H.: Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation. Neural Netw. 171, 85–103 (2024)

    Google Scholar 

  39. Chen, X., Wang, N., Wang, Y., Wu, H., Xu, Q.: Memristor initial-offset boosting and its bifurcation mechanism in a memristive Fitzhugh–Nagumo neuron model with hidden dynamics. Chaos Solitons Fractals 174, 113836 (2023)

    MathSciNet  Google Scholar 

  40. Iyer, R., Ungless, M.A., Faisal, A.A.: Calcium-activated SK channels control firing regularity by modulating sodium channel availability in midbrain dopamine neurons. Sci. Rep. 7(1), 5248 (2017)

    Google Scholar 

  41. András, V., Tomek, J., Nagy, N., Virág, L., Passini, E., Rodriguez, B., Baczkó, I.: Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol. Rev. 101(3), 1083–1176 (2021)

    Google Scholar 

  42. Emery, E.C., Luiz, A.P., Sikandar, S., Magnúsdóttir, R., Dong, X., Wood, J.N.: In vivo characterization of distinct modality-specific subsets of somatosensory neurons using gcamp. Sci. Adv. 2(11), e1600990 (2016)

    Google Scholar 

  43. Li, C., Ke, Q., Yao, C., Yao, C., Mi, Y., Wu, M., Ge, L.: Comparison of bipolar and unipolar pulses in cell electrofusion: simulation and experimental research. IEEE Trans. Biomed. Eng. 66(5), 1353–1360 (2018)

    Google Scholar 

  44. Xu, Q., Chen, X., Chen, B., Wu, H., Li, Z., Bao, H.: Dynamical analysis of an improved Fitzhugh–Nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 111(9), 8737–8749 (2023)

    Google Scholar 

  45. Kennedy, A., Kunwar, P.S., Li, L.Y., Stagkourakis, S., Wagenaar, D.A., Anderson, D.J.: Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature 586(7831), 730–734 (2020)

    Google Scholar 

  46. Zhou, P., Choi, D.U., Lu, W.D., Kang, S.M., Eshraghian, J.K.: Gradient-based neuromorphic learning on dynamical RRAM arrays. IEEE J. Emerg. Sel. Top. Circuits Syst. 12(4), 888–897 (2022)

    Google Scholar 

  47. Lin, H., Wang, C., Yu, F., Hong, Q., Xu, C., Sun, Y.: A triple-memristor Hopfield neural network with space multi-structure attractors and space initial-offset behaviors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(12), 4948–4958 (2023)

    Google Scholar 

  48. Lai, Q., Lai, C., Zhang, H., Li, C.: Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption. Chaos Solitons Fractals 158, 112017 (2022)

    MathSciNet  Google Scholar 

  49. Basu, A., Hasler, P.E.: Nullcline-based design of a silicon neuron. IEEE Trans. Circuits Syst. I Regul. Pap. 57(11), 2938–2947 (2010)

    MathSciNet  Google Scholar 

  50. Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: A scalable neuristor built with Mott memristors. Nat. Mater. 12(2), 114–117 (2013)

    Google Scholar 

  51. Kumar, S., Williams, R.S., Wang, Z.: Third-order nanocircuit elements for neuromorphic engineering. Nature 585(7826), 518–523 (2020)

    Google Scholar 

  52. Sun, J., Han, J., Wang, Y., Liu, P.: Memristor-based neural network circuit of operant conditioning accorded with biological feature. IEEE Trans. Circuits Syst. I Regul. Pap. 69(11), 4475–4486 (2022)

    Google Scholar 

  53. Hu, X., Liu, C.: Dynamic property analysis and circuit implementation of simplified memristive Hodgkin–Huxley neuron model. Nonlinear Dyn. 97, 1721–1733 (2019)

  54. Xu, Q., Wang, Y., Wu, H., Chen, M., Chen, B.: Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin–Huxley circuit. Chaos Solitons Fractals 179, 114458 (2024)

    MathSciNet  Google Scholar 

  55. Chua, L.: Memristor, Hodgkin–Huxley, and edge of chaos. Nanotechnology 24(38), 383001 (2013)

    Google Scholar 

  56. Hussain, I., Jafari, S., Ghosh, D., Perc, M.: Synchronization and chimeras in a network of photosensitive Fitzhugh–Nagumo neurons. Nonlinear Dyn. 104(3), 2711–2721 (2021)

    Google Scholar 

  57. Dai, X., Li, X., Guo, H., Jia, D., Perc, M., Manshour, P., Wang, Z., Boccaletti, S.: Discontinuous transitions and rhythmic states in the d-dimensional Kuramoto model induced by a positive feedback with the global order parameter. Phys. Rev. Lett. 125(19), 194101 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China under Grant Nos. 12172066, 52307002, the Natural Science Foundation of Jiangsu Province, China, under Grant No. BK20230628, the Project 333 of Jiangsu Province, the Scientific Research Foundation of Jiangsu Provincial Education Department, China, under Grant 23KJB120002, and Centre for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2024/RP/012.

Author information

Authors and Affiliations

Authors

Contributions

Q. Xu: Methodology, formal analysis, writing—original draft. Y. Fang: Formal analysis. C. Feng: Writing—review and editing. F. Parastesh: Software. M. Chen: Writing—review and editing. N. Wang: Supervision, project administration Writing—review and editing.

Corresponding author

Correspondence to Ning Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Fang, Y., Feng, C. et al. Firing activity in an N-type locally active memristor-based Hodgkin–Huxley circuit. Nonlinear Dyn 112, 13451–13464 (2024). https://doi.org/10.1007/s11071-024-09728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09728-z

Keywords

Navigation