Abstract
Hodgkin–Huxley (HH) circuit can reproduce abundant neuronal firing activities, but it is hard to physically implement the HH circuit. To solve this issue, an implementable HH circuit with two N-type locally active memristors (LAMs) to respectively characterize its \({\textrm{Na}}^+\) and \({\textrm{K}}^+\) channels is proposed in this paper. Numerical explorations demonstrate that the N-type LAM-based Hodgkin–Huxley (N-LAM-HH) circuit can effectively generate periodic and chaotic firing activities. Moreover, a PCB-based hardware circuit is physically implemented and experimental measurement is performed. The experimentally captured time-domain waveforms of chaotic and periodic firing activities well confirm the numerical explorations. These verify the feasibility of the LAM in characterizing \({\textrm{Na}}^+\) and \({\textrm{K}}^+\) channels and the availability of the N-LAM-HH circuit in generating firing activities, which can assist us in building the memristor-based neuromorphic hardware and exploring spike-based applications
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Ge, M., Jia, Y., Xu, Y., Yang, L.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91(1), 515–523 (2018)
Foroutannia, A., Ghasemi, M., Parastesh, F., Jafari, S., Perc, M.: Complete dynamical analysis of a neocortical network model. Nonlinear Dyn. 100, 2699–2714 (2020)
Yang, F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos Interdiscip. J. Nonlinear Sci. 33(2), 023110 (2023)
Palabas, T., Torres, J.J., Perc, M., Uzuntarla, M.: Double stochastic resonance in neuronal dynamics due to astrocytes. Chaos Solitons Fractals 168, 113140 (2023)
Xu, Q., Wang, Y., Iu, H.H.C., Wang, N., Bao, H.: Locally active memristor-based neuromorphic circuit: firing pattern and hardware experiment. IEEE Trans. Circuits Syst. I Regul. Pap. 70(8), 3130–3141 (2023)
Qiao, S., Gao, C., An, X.: Hidden dynamics and control of a Filippov memristive hybrid neuron model. Nonlinear Dyn. 111(11), 10529–10557 (2023)
Bao, H., Yu, X., Xu, Q., Wu, H., Bao, B.: Three-dimensional memristive Morris–Lecar model with magnetic induction effects and its FPGA implementation. Cogn. Neurodyn. 17(4), 1079–1092 (2023)
Yu, D., Wang, G., Li, T., Ding, Q., Jia, Y.: Filtering properties of Hodgkin–Huxley neuron on different time-scale signals. Commun. Nonlinear Sci. Numer. Simul. 117, 106894 (2023)
Zhou, X., Xu, Y., Wang, G., Jia, Y.: Ionic channel blockage in stochastic Hodgkin–Huxley neuronal model driven by multiple oscillatory signals. Cogn. Neurodyn. 14, 569–578 (2020)
Njitacke, Z.T., Ramadoss, J., Takembo, C.N., Rajagopal, K., Awrejcewicz, J.: An enhanced Fitzhugh–Nagumo neuron circuit, microcontroller-based hardware implementation: light illumination and magnetic field effects on information patterns. Chaos Solitons Fractals 167, 113014 (2023)
Xu, L., Qi, G., Ma, J.: Modeling of memristor-based Hindmarsh–Rose neuron and its dynamical analyses using energy method. Appl. Math. Model. 101, 503–516 (2022)
Zhang, X., Min, F., Dou, Y., Xu, Y.: Bifurcation analysis of a modified Fitzhugh–Nagumo neuron with electric field. Chaos Solitons Fractals 170, 113415 (2023)
Sehgal, S., Foulkes, A.: Numerical analysis of subcritical Hopf bifurcations in the two-dimensional Fitzhugh–Nagumo model. Phys. Rev. E 102(1), 012212 (2020)
Taher, H., Avitabile, D., Desroches, M.: Bursting in a next generation neural mass model with synaptic dynamics: a slow-fast approach. Nonlinear Dyn. 108(4), 4261–4285 (2022)
Manoj, K.M., Tamagawa, H.: Critical analysis of explanations for cellular homeostasis and electrophysiology from murburn perspective. J. Cell. Physiol. 237(1), 421–435 (2022)
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)
Hodgkin, A.L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26(4), 339–409 (1951)
Dawson, J.R., DeMarco, K., Yang, P.C., Bekker, S., Yarov-Yarovoy, V., Clancy, C.E., Vorobyov, I.V.: Elucidating the molecular determinants of pro-arrhythmic proclivities of Beta-blocking drugs. Biophys. J . 118(3), 115a–116a (2020)
Chua, L.: Hodgkin–Huxley equations implies edge of chaos kernel. Jpn. J. Appl. Phys. 61(SM), SM0805 (2022)
Njitacke, Z.T., Takembo, C.N., Koumetio, B.N., Awrejcewicz, J.: Complex dynamics and autapse-modulated information patterns in memristive Wilson neurons. Nonlinear Dyn. 110(3), 2793–2804 (2022)
Fossi, J.T., Deli, V., Njitacke, Z.T., Mendimi, J.M., Kemwoue, F.F., Atangana, J.: Phase synchronization, extreme multistability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse. Nonlinear Dyn. 109(2), 925–942 (2022)
Ascoli, A., Demirkol, A.S., Tetzlaff, R., Chua, L.: Analysis and design of bio-inspired circuits with locally-active memristors. IEEE Trans. Circuits Syst. II Express Briefs 71(3), 1721–1726 (2024)
Jin, P., Wang, G., Liang, Y., Iu, H.H.C., Chua, L.O.: Neuromorphic dynamics of Chua corsage memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4419–4432 (2021)
Ascoli, A., Demirkol, A.S., Tetzlaff, R., Chua, L.: Edge of chaos theory resolves smale paradox. IEEE Trans. Circuits Syst. I Regul. Pap. 69(3), 1252–1265 (2022)
Chua, L., Sbitnev, V., Kim, H.: Neurons are poised near the edge of chaos. Int. J. Bifurc. Chaos 22(04), 1250098 (2012)
Mannan, Z.I., Choi, H., Kim, H.: Chua corsage memristor oscillator via Hopf bifurcation. Int. J. Bifurc. Chaos 26(04), 1630009 (2016)
Jin, P., Wang, G., Chen, L.: Biphasic action potential and chaos in a symmetrical Chua corsage memristor-based circuit. Chaos Interdiscip. J. Nonlinear Sci. 33(2) (2023)
Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020)
Ascoli, A., Slesazeck, S., Mähne, H., Tetzlaff, R., Mikolajick, T.: Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 62(4), 1165–1174 (2015)
Weiher, M., Herzig, M., Tetzlaff, R., Ascoli, A., Mikolajick, T., Slesazeck, S.: Pattern formation with locally active S-type NbOx memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 66(7), 2627–2638 (2019)
Liang, Y., Zhu, Q., Wang, G., Nath, S.K., Iu, H.H.C., Nandi, S.K., Elliman, R.G.: Universal dynamics analysis of locally-active memristors and its applications. IEEE Trans. Circuits Syst. I Regul. Pap. 69(3), 1278–1290 (2021)
Liang, Y., Wang, S., Dong, Y., Lu, Z., Wang, G.: Locally-active memristors-based reactance-less oscillator. IEEE Trans. Circuits Syst. II Express Briefs 70(1), 321–325 (2022)
Sah, M.P., Kim, H., Chua, L.O.: Brains are made of memristors. IEEE Circuits Syst. Mag. 14(1), 12–36 (2014)
Li, C., Min, F., Li, C.: Multiple coexisting attractors of the serial-parallel memristor-based chaotic system and its adaptive generalized synchronization. Nonlinear Dyn. 94(4), 2785–2806 (2018)
Shen, H., Yu, F., Wang, C., Sun, J., Cai, S.: Firing mechanism based on single memristive neuron and double memristive coupled neurons. Nonlinear Dyn. 110(4), 3807–3822 (2022)
Xu, Q., Wang, Y., Chen, B., Li, Z., Wang, N.: Firing pattern in a memristive Hodgkin–Huxley circuit: numerical simulation and analog circuit validation. Chaos Solitons Fractals 172, 113627 (2023)
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)
Kong, X., Yu, F., Yao, W., Cai, S., Zhang, J., Lin, H.: Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation. Neural Netw. 171, 85–103 (2024)
Chen, X., Wang, N., Wang, Y., Wu, H., Xu, Q.: Memristor initial-offset boosting and its bifurcation mechanism in a memristive Fitzhugh–Nagumo neuron model with hidden dynamics. Chaos Solitons Fractals 174, 113836 (2023)
Iyer, R., Ungless, M.A., Faisal, A.A.: Calcium-activated SK channels control firing regularity by modulating sodium channel availability in midbrain dopamine neurons. Sci. Rep. 7(1), 5248 (2017)
András, V., Tomek, J., Nagy, N., Virág, L., Passini, E., Rodriguez, B., Baczkó, I.: Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol. Rev. 101(3), 1083–1176 (2021)
Emery, E.C., Luiz, A.P., Sikandar, S., Magnúsdóttir, R., Dong, X., Wood, J.N.: In vivo characterization of distinct modality-specific subsets of somatosensory neurons using gcamp. Sci. Adv. 2(11), e1600990 (2016)
Li, C., Ke, Q., Yao, C., Yao, C., Mi, Y., Wu, M., Ge, L.: Comparison of bipolar and unipolar pulses in cell electrofusion: simulation and experimental research. IEEE Trans. Biomed. Eng. 66(5), 1353–1360 (2018)
Xu, Q., Chen, X., Chen, B., Wu, H., Li, Z., Bao, H.: Dynamical analysis of an improved Fitzhugh–Nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 111(9), 8737–8749 (2023)
Kennedy, A., Kunwar, P.S., Li, L.Y., Stagkourakis, S., Wagenaar, D.A., Anderson, D.J.: Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature 586(7831), 730–734 (2020)
Zhou, P., Choi, D.U., Lu, W.D., Kang, S.M., Eshraghian, J.K.: Gradient-based neuromorphic learning on dynamical RRAM arrays. IEEE J. Emerg. Sel. Top. Circuits Syst. 12(4), 888–897 (2022)
Lin, H., Wang, C., Yu, F., Hong, Q., Xu, C., Sun, Y.: A triple-memristor Hopfield neural network with space multi-structure attractors and space initial-offset behaviors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(12), 4948–4958 (2023)
Lai, Q., Lai, C., Zhang, H., Li, C.: Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption. Chaos Solitons Fractals 158, 112017 (2022)
Basu, A., Hasler, P.E.: Nullcline-based design of a silicon neuron. IEEE Trans. Circuits Syst. I Regul. Pap. 57(11), 2938–2947 (2010)
Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: A scalable neuristor built with Mott memristors. Nat. Mater. 12(2), 114–117 (2013)
Kumar, S., Williams, R.S., Wang, Z.: Third-order nanocircuit elements for neuromorphic engineering. Nature 585(7826), 518–523 (2020)
Sun, J., Han, J., Wang, Y., Liu, P.: Memristor-based neural network circuit of operant conditioning accorded with biological feature. IEEE Trans. Circuits Syst. I Regul. Pap. 69(11), 4475–4486 (2022)
Hu, X., Liu, C.: Dynamic property analysis and circuit implementation of simplified memristive Hodgkin–Huxley neuron model. Nonlinear Dyn. 97, 1721–1733 (2019)
Xu, Q., Wang, Y., Wu, H., Chen, M., Chen, B.: Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin–Huxley circuit. Chaos Solitons Fractals 179, 114458 (2024)
Chua, L.: Memristor, Hodgkin–Huxley, and edge of chaos. Nanotechnology 24(38), 383001 (2013)
Hussain, I., Jafari, S., Ghosh, D., Perc, M.: Synchronization and chimeras in a network of photosensitive Fitzhugh–Nagumo neurons. Nonlinear Dyn. 104(3), 2711–2721 (2021)
Dai, X., Li, X., Guo, H., Jia, D., Perc, M., Manshour, P., Wang, Z., Boccaletti, S.: Discontinuous transitions and rhythmic states in the d-dimensional Kuramoto model induced by a positive feedback with the global order parameter. Phys. Rev. Lett. 125(19), 194101 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundations of China under Grant Nos. 12172066, 52307002, the Natural Science Foundation of Jiangsu Province, China, under Grant No. BK20230628, the Project 333 of Jiangsu Province, the Scientific Research Foundation of Jiangsu Provincial Education Department, China, under Grant 23KJB120002, and Centre for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2024/RP/012.
Author information
Authors and Affiliations
Contributions
Q. Xu: Methodology, formal analysis, writing—original draft. Y. Fang: Formal analysis. C. Feng: Writing—review and editing. F. Parastesh: Software. M. Chen: Writing—review and editing. N. Wang: Supervision, project administration Writing—review and editing.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xu, Q., Fang, Y., Feng, C. et al. Firing activity in an N-type locally active memristor-based Hodgkin–Huxley circuit. Nonlinear Dyn 112, 13451–13464 (2024). https://doi.org/10.1007/s11071-024-09728-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-024-09728-z