Skip to main content
Log in

Design and analysis of state-constrained nonlinear finite-time control algorithm with application to buck converter

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a double closed loop current-constrained finite-time controller for the buck converter circuit under current constraint. Firstly, the controller consists of an outer loop controller and an inner loop controller. The outer loop controller is dedicated to voltage tracking and enhances the speed of voltage convergence. Meanwhile, the inner loop controller employs the Barrier Lyapunov Function to ensure the current remains within a safe range. Secondly, homogeneous system method is used to demonstrate the finite-time stability of the double closed loop system. Finally, simulations and experiments validate the effectiveness and superiority of the proposed algorithm in the start-up stage and load mutation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Liu, Z., Lin, X.P., Gao, Y.B., Xu, R.Q., Wang, J.H., Wang, Y.J., Liu, J.X.: Fixed-time sliding mode control for DC/DC buck converters with mismatched uncertainties. IEEE Trans. Circuits Syst. I-Regul. Pap. 70(1), 472–480 (2023)

    Article  Google Scholar 

  2. Zhang, C.L., Wang, J.X., Li, S.H., Wu, B., Qian, C.J.: Robust control for PWM-based DC-DC Buck power converters with uncertainty via sampled-data output feedback. IEEE Trans. Power Electron. 30(1), 504–515 (2014)

    Article  Google Scholar 

  3. Son, Y.I., Kim, I.H.: Complementary PID controller to passivity-based nonlinear control of boost converters with inductor resistance. IEEE Trans. Control Syst. Technol. 20(3), 826–834 (2011)

    Article  Google Scholar 

  4. Zhang, R.Y., Wu, A.G., Wang, Z.H., Cang, S.J.: Chaotic and subharmonic oscillations in a DC–DC boost converter with PWM voltage-current hybrid controller and parallel MR load. Nonlinear Dyn. 99(2), 1321–1339 (2020)

    Article  Google Scholar 

  5. Tan, S.C., Lai, Y.M., Tse, C.K.: General design issues of sliding-mode controllers in DC-DC converters. IEEE Trans. Ind. Electron. 55(3), 1160–1174 (2008)

    Article  Google Scholar 

  6. Ding, S.H., Zheng, W.X., Sun, J.L., Wang, J.D.: Second-order sliding-mode controller design and its implementation for buck converters. IEEE Trans. Ind. Inform. 14(5), 1990–2000 (2017)

    Article  Google Scholar 

  7. Shan, Y.H., Hu, J.F., Li, Z.L., Guerrero, J.M.: A model predictive control for renewable energy based AC microgrids without any PID regulators. IEEE Trans. Power Electron. 33(11), 9122–9126 (2018)

    Article  Google Scholar 

  8. Kim, S.K., Park, C.R., Kim, J.S., Lee, Y.I.: A stabilizing model predictive controller for voltage regulation of a DC/DC boost converter. IEEE Trans. Control Syst. Technol. 22(5), 2016–2023 (2014)

    Article  Google Scholar 

  9. Shi, D.N., Zhang, J.H., Sun, Z.Q., Xia, Y.Q.: Adaptive sliding mode disturbance observer-based composite trajectory tracking control for robot manipulator with prescribed performance. Nonlinear Dyn. 109(4), 2693–2704 (2022)

    Article  Google Scholar 

  10. Liu, Z., Zhao, Y., Zhang, O.Y., Chen, W.L., Wang, J.H., Gao, Y.B., Liu, J.X.: A novel faster fixed-time adaptive control for robotic systems with input saturation. IEEE Trans. Ind. Electron. 71(5), 5215–5223 (2024)

    Article  Google Scholar 

  11. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  12. Lin, X.P., Wu, C.W., Yao, W.R., Liu, Z., Shen, X.N., Xu, R.Q., Sun, G.H., Liu, J.X.: Observer-based fixed-time control for permanent-magnet synchronous motors with parameter uncertainties. IEEE Trans. Ind. Electron. 38(4), 4335–4344 (2023)

    Google Scholar 

  13. Ding, S.H., Li, S.H.: Global finite-time stabilization of nonlinear integrator systems subject to input saturation. Acta Autom. Sin. 37(10), 1222–1231 (2011)

    MathSciNet  Google Scholar 

  14. Zhai, J.Y.: Global finite-time output feedback stabilisation for a class of uncertain non-triangular nonlinear systems. Int. J. Syst. Sci. 45(3), 637–646 (2014)

    Article  Google Scholar 

  15. Kuang, J.Y., Gao, Y.B., Chen, C.-C., Zhang, X.J., Sun, Y.Z., Liu, J.X.: Stabilization with prescribed instant for high-order integrator systems. IEEE Trans. Cybern. 53(11), 7275–7284 (2023)

    Article  Google Scholar 

  16. Jin, X., Xu, J.X.: Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties. Automatica 49(8), 2508–2516 (2013)

    Article  MathSciNet  Google Scholar 

  17. Niu, B., Zhao, J.: Output tracking control for a class of switched non-linear systems with partial state constraints. IET Contr. Theory Appl. 7(4), 623–631 (2013)

    Article  MathSciNet  Google Scholar 

  18. Leppaaho, J., Suntio, T.: Characterizing the dynamics of the peak-current-mode-controlled buck-power-stage converter in photovoltaic applications. IEEE Trans. Power Electron. 29(7), 3840–3847 (2013)

    Article  Google Scholar 

  19. Yin, Y.F., Liu, J.X., Marquez, A., Lin, X.P., Leon, J.I., Vazquez, S., Franquelo, L.G., Wu, L.G.: Advanced control strategies for DC–DC buck converters with parametric uncertainties via experimental evaluation. IEEE Trans. Circuits Syst. I-Regul. Pap. 67(12), 5257–5267 (2020)

    Article  MathSciNet  Google Scholar 

  20. Guo, T.L., Wang, Z., Wang, X.Y., Li, S.H., Li, Q.: A simple control approach for buck converters with current-constrained technique. IEEE Trans. Control Syst. Technol. 27(1), 418–425 (2017)

    Article  Google Scholar 

  21. Veerachary, M., Trivedi, A.: Linear matrix inequality-based multivariable controller design for boost cascaded charge-pump-based double-input DC-DC converter. IEEE Trans. Ind. Appl. 58(6), 7515–7528 (2022)

    Article  Google Scholar 

  22. Wen, G.H., Zheng, W.X., Du, H.B.: Homogeneous constrained finite-time controller for double integrator systems: analysis and experiment. Automatica 134, 109894 (2021)

    Article  MathSciNet  Google Scholar 

  23. Rosas-Caro, J.C., Escobar, G., Martinez-Rodriguez, P.R., Iturriaga-Medina, S., Mayo-Maldonado, J.C., Valdez-Resendiz, J.E.: Differential and common-mode model-based controller for the double-dual buck transformerless inverter. Int. J. Electr. Power Energy Syst. 131, 107065 (2021)

    Article  Google Scholar 

  24. Moller, M., Glocker, C.: Non-smooth modelling of electrical systems using the flux approach. Nonlinear Dyn. 50(1–2), 273–295 (2007)

    Article  Google Scholar 

  25. Molla-Ahmadian, H., Karimpour, A., Pariz, N., Tahami, F.: Hybrid modeling of a DC–DC series resonant converter: direct piecewise affine approach. IEEE Trans. Circuits Syst. I-Regul. Pap. 59(12), 3112–3120 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zhou, Z.Y., Liu, Z., Guo, L.L., Wang, J.K., Liu, J.J.: Accurate modeling and elimination of double vertical crossing in multi-sampled digital-controlled buck converters. IEEE Trans. Power Electron. 38(7), 8165–8176 (2023)

    Article  Google Scholar 

  27. Barzegarkhoo, R., Farhangi, M., Lee, S.S., Aguilera, R.P., Siwakoti, Y.P., Pou, J.: Nine-level nine-switch common-ground switched-capacitor inverter suitable for high-frequency AC-microgrid applications. IEEE Trans. Power Electron. 37(5), 6132–6143 (2022)

    Article  Google Scholar 

  28. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with application to finite-time stability. Math. Control Signal Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  Google Scholar 

  29. Hong, Y., Huang, J., Xu, Y.S.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46(2), 305–309 (2001)

  30. Tan, S.C., Lai, Y.M., Tse, C.K.: Sliding mode control of switching power converters. IEEE Ind. Electron. Mag. 6(3), 60–61 (2012)

    Article  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Grant Number 62073113, 62003122), Natural Science Foundation of Anhui Province of China (Grant Number 2008085UD03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cheng, Y., Du, H. et al. Design and analysis of state-constrained nonlinear finite-time control algorithm with application to buck converter. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09672-y

Keywords

Navigation