Skip to main content
Log in

Nonlinear normal modes and dynamic balancing for a nonlinear rotor system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The basis of rotor dynamic balancing procedures depends on the linearization hypothesis of the system. However, some dynamical characteristics of mechanical elements of rotor systems are nonlinear. To increase the balancing efficiency, an improved algorithm is proposed by applying the Nonlinear Normal Modes (NNMs) to the modal balancing procedure. To demonstrate the accuracy and effectiveness of the proposed method, a Jeffcott rotor with nonlinear restore force is balanced by both the NNMs method and the linear modal method for comparation. The simulations show that the balancing results by the NNMs method are significantly better than those by the linear modal method, regardless of levels of nonlinearity and eccentricity, by comparing the percentage reduction in vibration amplitude at critical frequencies, spectra of responses and resonance curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Abbreviations

\({A}_{{i}_{k}}\) :

Complex amplitude of the rotor response

\({a}_{{i}_{k}}\) :

Amplitude spectrum of the rotor response

\({\mathbf{b}}_{n}\) :

Trial balance vector

\({\mathbf{b}}_{\mathbf{c}}\) :

Total unbalance correction

\(\mathbf{C}\) :

Damping matrix

\({e}_{d}\) :

Eccentricity

\({\mathbf{F}}_{{\text{nl}}}\) :

Nonlinear function

\({\mathbf{F}}_{{\text{e}}}\) :

Unbalanced excitation

\({F}_{{\text{x}}},{F}_{y}\) :

Elastic restoring force in horizontal and vertical directions, respectively

\({f}_{1},{f}_{2}\) :

Dimensionless mass eccentricities

\({G}_{i}\) :

Gravity centers

\(\mathbf{K}\) :

Stiffness matrix

\({k}_{1},{k}_{2}\) :

Linear and nonlinear stiffness coefficients of the shaft

\(\mathbf{M}\) :

Mass matrix

\({M}_{i}\) :

Geometric centers

\(\mathbf{r}\) :

Response vector of the rotor system

\({\mathbf{r}}^{\boldsymbol{*}}\) :

Rotor response after attaching the trial masses

\({\mathbf{r}}_{{\text{d}}}\) :

Difference of the vibrations before and after adding the trial balance

\({u}_{{i}_{k}}\) :

Amplitude of the kth harmonic component in the NNM shapes

\({\mathbf{u}}_{i}\) :

NNM shapes in the complex amplitude vector form

\(\mathbf{U}\) :

Nonlinear mode shapes of the rotor system

\(x,\dot{x},\ddot{x}\) :

Displacement, velocity and acceleration in, respectively, of the horizontal oscillation

\(y,\dot{y},\ddot{y}\) :

Displacement, velocity and acceleration in, respectively, of the vertical oscillation

\({x}_{i,st},{y}_{i,st}\) :

Static displacements in horizontal and vertical directions, respectively

\({x}_{i,0}^{*},{y}_{i,0}^{*}\) :

Perturbation around the static equilibrium in horizontal and vertical directions, respectively

\({{\varvec{x}}}_{p}\) :

Periodic solutions of the NNM motion

\(\alpha \) :

Phase angle

\({\alpha }_{{n}_{{i}_{k}}}\) :

Correction factor for each of the frequency components

\({{\varvec{\upalpha}}}_{n}\) :

Correction coefficient vector of the trial balance

\(\mathrm{\angle }{\beta }_{{i}_{k}}\) :

Phase spectrum of the rotor response

\(\delta \) :

Arbitrary positive real scalar

\({\theta }_{{i}_{k}}\) :

Phase of the k th harmonic component in the NNM shapes

\({\lambda }_{1},{\lambda }_{2}\) :

Mechanical stiffness ratios

\(\Omega \) :

Dimensionless frequency ratio

\({\mu }_{1},{\mu }_{2}\) :

Dimensionless damping ratios

\(\omega \) :

Angular speed

\({\omega }_{k}\) :

Angular frequency of the kth harmonic component in the NNM shapes

NNMs:

Nonlinear normal modes

LNMs:

Linear normal modes

mX:

The rotational and the multiple of the rotational frequency components, m = 1, 2, 3,

References

  1. R. Bishop, The vibration of rotating shafts (reprinted from vol 1, 1959), ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989–1996 (vols 203–210), 223 (2009) 7–22.

  2. Goodman, T.P.: A Least-Squares Method for Computing Balance Corrections. J. Manuf. Sci. Eng. 86, 273–277 (1964)

    Google Scholar 

  3. Parkinson, A.G., Darlow, M.S., Smalley, A.J.: A theoretical introduction to the development of a unified approach to flexible rotor balancing. J. Sound Vib. 68, 489–506 (1980)

    Article  Google Scholar 

  4. Da Rlow, M.S.: Balancing of high-speed machinery: Theory, methods and experimental results. Mech. Syst. Signal Process. 1, 105–134 (1987)

    Article  Google Scholar 

  5. Foiles, W.C., Allaire, P.E., Gunter, E.J.: Review: rotor balancing. Shock. Vib. 5, 325–336 (1998)

    Article  Google Scholar 

  6. Zhang, X., Liu, X., Zhao, H.: New active online balancing method for grinding wheel using liquid injection and free dripping. J. Vibr. Acoust. Trans. ASME (2018). https://doi.org/10.1115/1.4037955

    Article  Google Scholar 

  7. Alves, D.S., Cavalca, K.L.: Investigation into the influence of bearings nonlinear forces in unbalance identification. J. Sound Vib. 492, 115807 (2021)

    Article  Google Scholar 

  8. Turpin, A., Sharan, A.M.: Balancing of rotors supported on bearings having nonlinear stiffness characteristics. J. Eng. Gas Turbines Power 116(3), 718–726 (1994)

    Article  Google Scholar 

  9. Alves, D.S., Machado, T.H., Cavalca, K.L., Bachschmid, N.: Characteristics of oil film nonlinearity in bearings and its effects in rotor balancing. J. Sound Vib. 459, 114854 (2019)

    Article  Google Scholar 

  10. Rosenberg, R.M.: On Nonlinear Vibrations of Systems with Many Degrees of Freedom. Adv. Appl. Mech. 9, 155–242 (1966)

    Article  Google Scholar 

  11. Arquier, R., Bellizzi, S., Bouc, R., Cochelin, B.: Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Comput. Struct. 84, 1565–1576 (2017)

    Article  MathSciNet  Google Scholar 

  12. Peeters, M., Viguie, R., Serandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23, 195–216 (2009)

    Article  Google Scholar 

  13. Laxalde, D., Thouverez, F.: Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces. J. Sound Vib. 322, 1009–1025 (2009)

    Article  Google Scholar 

  14. Renson, L., Deliége, G., Kerschen, G.: An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49, 1901–1916 (2014)

    Article  MathSciNet  Google Scholar 

  15. Peeters, M., Kerschen, G., Golinval, J.C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330, 486–509 (2011)

    Article  Google Scholar 

  16. Peeters, M., Kerschen, G., Golinval, J.C.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: Experimental demonstration. Mech. Syst. Signal Process. 25, 1227–1247 (2011)

    Article  Google Scholar 

  17. Noël, J.-P., Renson, L., Grappasonni, C., Kerschen, G.: Identification of nonlinear normal modes of engineering structures under broadband forcing. Mech. Syst. Signal Process. 74, 95–110 (2016)

    Article  Google Scholar 

  18. Zapico-Valle, J.L., García-Diéguez, M., Alonso-Camblor, R.: Nonlinear modal identification of a steel frame. Eng. Struct. 56, 246–259 (2013)

    Article  Google Scholar 

  19. Ehrhardt, D.A., Allen, M.S.: Measurement of nonlinear normal modes using multi-harmonic stepped force appropriation and free decay. Mech. Syst. Signal Process. 76–77, 612–633 (2016)

    Article  Google Scholar 

  20. D.A. Ehrhardt, R.B. Harris, M.S. Allen, Numerical and Experimental Determination of Nonlinear Normal Modes of a Circular Perforated Plate, Topics in Modal Analysis I, Volume 7, 2014.

  21. Londoño, J.M., Neild, S.A., Cooper, J.E.: Identification of backbone curves of nonlinear systems from resonance decay responses. J. Sound Vib. 348, 224–238 (2015)

    Article  Google Scholar 

  22. Yabuno, H., Kashimura, T., Inoue, T., Ishida, Y.: Nonlinear normal modes and primary resonance of horizontally supported Jeffcott rotor. Nonlinear Dyn. 66, 377–387 (2011)

    Article  MathSciNet  Google Scholar 

  23. Lewis, G., Monasa, F.: Large deflections of cantilever beams of nonlinear materials. Comput. Struct. 14, 357–360 (1981)

    Article  Google Scholar 

  24. Haslach, H.W.: Post-buckling behavior of columns with non-linear constitutive equations. Int. J. Non-Linear Mech. 20, 53–67 (1985)

    Article  Google Scholar 

  25. Yamamoto, T., Da Ishi, Y.: Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications. Wiley (2013)

    Google Scholar 

  26. G. Kerschen, M. Peeters, J.C. Golinval, A.F. Vakakis, Nonlinear normal modes, Part I: A useful framework for the structural dynamicist, Mechanical Systems and Signal Processing, (2009) 170–194.

  27. M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, J.-C. Golinval, Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques, Mechanical Systems and Signal Processing, (2009) 195–216.

  28. Genta, G.: Dynamics of Rotating Systems. Springer, New York, NY (2005)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China through the grant Nos. 12021002 and 12132010.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Ding.

Ethics declarations

Conflicrt of interest

The authors declare that they have no conflicts of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Ding, Q. Nonlinear normal modes and dynamic balancing for a nonlinear rotor system. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09654-0

Keywords

Navigation