Skip to main content
Log in

Fluid–structure interaction analysis of the influences of structural parameters on the dynamic properties of aerostatic journal bearing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

One of the outstanding advantages of aerostatic bearing is high speed, which is the basic component for various ultra-precision machining. Compared with thrust bearing, journal bearing is less studied and more complex. Structural parameters have great influences on the static properties of the bearing. However, due to the strong coupling, the study of the structural parameters on the bearing dynamic properties at high speed is insufficient. The fluid–structure interaction model of the bearing is formed by directly combining the pressure distribution equations of the gas film, the spindle motion equation, and the flow balance equations. The coupled equations are numerically solved using the two-way alternating implicit scheme method, the Newton iteration method, the Thomas algorithm, and the Newmark method. The influences of orifice diameter, bearing clearance, recess length, and recess height on the dynamic properties of the system are investigated. The results show that the structural parameters play a prominent influence on the bearing flow field and the spindle motion. With the change of the structural parameters, the system appears as T-periodic motion, multiple T-periodic motion, and quasi-periodic motion. The research contributes to the structural optimization and performance enhancement of aerostatic journal bearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

The authors declare that the current study has no associated data.

References

  1. Gao, Q., Chen, W., Lu, L., Huo, D., Cheng, K.: Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives. Tribol. Int. 135, 1–17 (2019)

    Article  Google Scholar 

  2. Zhao, Q., Qiang, M., Hou, Y., Chen, S., Lai, T.: Research developments of aerostatic thrust bearings: a review. Appl. Sci. 12, 11887 (2022)

    Article  Google Scholar 

  3. Al-Bender, F.: On the modelling of the dynamic characteristics of aerostatic bearing films: from stability analysis to active compensation. Precis. Eng. 33, 117–126 (2009)

    Article  Google Scholar 

  4. Zhou, Q., Zhang, Y.: Research status and developing trends of gas bearing in recent years. J. Phys. Conf. Ser. 2005, 012209 (2021)

    Article  Google Scholar 

  5. Papafragkos, P., Gavalas, I., Raptopoulos, I., Chasalevris, A.: Optimizing energy dissipation in gas foil bearings to eliminate bifurcations of limit cycles in unbalanced rotor systems. Nonlinear Dyn. 111, 67–95 (2022)

    Article  Google Scholar 

  6. Shi, M., Feng, K., Hu, J., Zhu, J., Cui, H.: Near-field acoustic levitation and applications to bearings: a critical review. Int. J. Extreme Manuf. 1, 032002 (2019)

    Article  Google Scholar 

  7. Li, Y., Ding, H.: Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance. Tribol. Int. 40(7), 1120–1126 (2007)

    Article  Google Scholar 

  8. Chen, X., Mills, J.K., Bao, G.: Static performance of the aerostatic journal bearing with grooves. Proceed. Inst. Mech. Eng. Part J. J. Eng. Tribol. 234(7), 1114–1130 (2019)

    Article  Google Scholar 

  9. Belforte, G., Colombo, F., Raparelli, T., Trivella, A., Viktorov, V.: Comparison between grooved and plane aerostatic thrust bearings: static performance. Meccanica 46(3), 547–555 (2011)

    Article  Google Scholar 

  10. Jeng, Y.R., Chang, S.H.: Comparison between the effects of single-pad and double-pad aerostatic bearings with pocketed orifices on bearing stiffness. Tribol. Int. 66, 12–18 (2013)

    Article  Google Scholar 

  11. Gao, S., Cheng, K., Chen, S., Ding, H., Fu, H.: CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultra-high speed spindles. Tribol. Int. 92, 211–221 (2015)

    Article  Google Scholar 

  12. Lai, T., Peng, X., Liu, J., Guan, C., Chen, X., Tie, G., Guo, M.: Design optimization of high-precision aerostatic equipment based on orifice restriction. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(10), 3459–3474 (2019)

    Article  Google Scholar 

  13. Yan, R., Wang, L., Wang, S.: Investigating the influences of pressure-equalizing grooves on characteristics of aerostatic bearings based on CFD. Ind. Lubr. Tribol. 71(7), 853–860 (2019)

    Article  Google Scholar 

  14. Yin, J., Yu, J., Lou, C., Li, D., Shen, X., Li, M.: Flow field analysis of lubricating air film in aerostatic restrictor with double U-shaped pressure-equalizing grooves. Int. J. Precis. Eng. Manuf. 24(2), 145–157 (2023)

    Article  Google Scholar 

  15. Zhang, H., Guan, X., Wang, T., Robin, A.U.Z., Mu, C.H.: Influence of pressure-equalizing groove on static load performance of aerostatic guideway. J. Appl. Fluid Mech. 16(5), 992–1004 (2023)

    Google Scholar 

  16. Qi, L., Liu, L., Gao, Q., Yao, Y., Lu, L., Gao, S.: Investigation on the influence of structural rigidity on the stiffness of aerostatic guideway considering fluid-structure interaction. Tribol. Int. 173, 107658 (2022)

    Article  Google Scholar 

  17. Qi, L., Zhu, M., Gao, Q., Xu, J., Liu, L., Wei, W., Lu, L.: A fast calculation method for the optimal clearance and stiffness of the aerostatic guideway considering fluid-structure interaction. Tribol. Int. 183, 108425 (2023)

    Article  Google Scholar 

  18. Wang, B., Sun, Y., Ding, Q.: Free fluid-structure interaction method for accurate nonlinear dynamic characteristics of the plain gas journal bearings. J. Vib. Eng. Technol. 8(1), 149–161 (2020)

    Article  Google Scholar 

  19. Wang, B., Ding, Q., Yang, T.: Soft rotor and gas bearing system: two-way coupled fluid-structure interaction. J. Sound Vib. 445, 29–43 (2019)

    Article  Google Scholar 

  20. Wang, B., Sun, Y., Ding, Q.: Dynamic characteristics of the herringbone groove gas journal bearings: numerical simulations. Shock. Vib. 2016, 8743016 (2016)

    Google Scholar 

  21. Yan, R., Wang, L., Wang, S.: Mechanical research on aerostatic guideways in consideration of fluid-structure interaction. Ind. Lubr. Tribol. 72(3), 285–290 (2020)

    Article  Google Scholar 

  22. Li, Q., Tang, X., Zhang, S., Wang, Y., Xu, W., Wang, Z.: Dynamic response analysis of tilting pad journal bearing considering fluid-structure interaction. J. Appl. Fluid Mech. 14(6), 1827–1837 (2021)

    Google Scholar 

  23. Liu, H., Xu, H., Ellison, P.J., Jin, Z.: Application of computational fluid dynamics and fluid–structure interaction method to the lubrication study of a rotor–bearing system. Tribol. Lett. 38(3), 325–336 (2010)

    Article  Google Scholar 

  24. Jiang, T., Jiang, K.: Numerical analysis of a hydrodynamic air bearing with electromagnetic assistance. Proceed. Inst. Mech. Eng. Part J. J. Eng. Tribol. 237(6), 1327–1341 (2023)

    Article  Google Scholar 

  25. Zhang, G., Sun, Y., Liu, Z., Xu, F., Yan, J.: Application of a forecasting coupling method to the non-linear dynamic analysis of a flexible rotor supported by externally pressurized orifices hybrid gas bearings. Proceed. Inst. Mech. Eng. Part J. J. Eng. Tribol. 225(8), 704–717 (2011)

    Article  Google Scholar 

  26. Zhang, G., Sun, Y., Liu, Z., Zhang, M., Yan, J.: Dynamic characteristics of self-acting gas bearing–flexible rotor coupling system based on the forecasting orbit method. Nonlinear Dyn. 69, 341–355 (2012)

    Article  Google Scholar 

  27. Chen, D., Zhao, Y., Zha, C., Liu, J.: Fluid-structure interaction on the dynamic characteristics of the hydrostatic spindle in micro-scale. Ind. Lubr. Tribol. 72(3), 397–403 (2020)

    Article  Google Scholar 

  28. Yin, T., Zhang, G., Du, J., To, S.: Nonlinear analysis of stability and rotational accuracy of an unbalanced rotor supported by aerostatic journal bearings. IEEE Access. 9, 61887–61900 (2021)

    Article  Google Scholar 

  29. An, L., Wang, W., Wang, C.: Dynamic modeling and analysis of high-speed aerostatic journal bearing-rotor system with recess. Tribol. Int. 187(1), 108686 (2023)

    Article  Google Scholar 

  30. Zhou, Y., Chen, X., Chen, H.: A hybrid approach to the numerical solution of air flow field in aerostatic thrust bearings. Tribol. Int. 102, 444–453 (2016)

    Article  Google Scholar 

  31. Yang, S.-P., Fang, X.-Q., Zhu, C.-S.: Nonlinear dynamic analysis of worn gas foil bearings. Mech. Based Des. Struct. Mach. 51(6), 3564–3582 (2023)

    Article  Google Scholar 

  32. Zheng, Y., Yang, G., Cui, H., Hou, Y.: Pneumatic stability analysis of single-pad aerostatic thrust bearing with pocketed orifice. Proceed. Inst. Mech. Eng. Part J. J. Eng. Tribol. 234(12), 1857–1866 (2020)

    Article  Google Scholar 

  33. Shi, J., Cao, H., Chen, X.: Effect of angular misalignment on the static characteristics of rotating externally pressurized air journal bearing. Sci. China Technol. Sci. 62(9), 1520–1533 (2019)

    Article  Google Scholar 

  34. Dal, A., Karacay, T.: Pneumatic hammer instability in the aerostatic journal bearing-rotor system: a theoretical and experimental analyses. Proceed. Inst. Mech. Eng. Part J. J. Eng. Tribol. 235(3), 524–543 (2021)

    Article  Google Scholar 

  35. Tkacz, E., Kozanecki, Z., Kozanecka, D.: Numerical methods for theoretical analysis of foil bearing dynamics. Mech. Res. Commun. 82, 9–13 (2017)

    Google Scholar 

  36. Chen, G., Chen, Y.: Multi-field coupling dynamics modeling of aerostatic spindle. Micromachines. 12(3), 251 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Industry and Information Technology High Quality Development Special Project (Grant No. 2023ZY01041-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, L., Wang, W., Wang, C. et al. Fluid–structure interaction analysis of the influences of structural parameters on the dynamic properties of aerostatic journal bearing. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09643-3

Keywords

Navigation