Skip to main content
Log in

Modal truncation method for continuum structures based on matrix norm: modal perturbation method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modal analysis is a widely applied method to study the vibration phenomenon of continuum structures, but there is no clear method to solve the modal truncation problem at present. To determine the contribution of different modes to the whole system, a new mode truncation method based on perturbation theory is proposed in this paper. The modes are subjected to perturbation parameters during discretization, and using norm error analysis on the stiffness matrix in different degrees of freedom (DOFs) systems confirms the model number of the continuum structure system. The results show that the DOF identified by the modal perturbation method is related to the perturbation parameter, and the smaller the perturbation parameter is, the fewer modes need to be considered. When the perturbation parameter is large enough, the response of the system can only be accurately explained by truncation to higher-order modes. Finally, the perturbation parameter is fixed to 1, and the traditional Galerkin method is connected to the modal perturbation, making traditional discretization a unique case for the modal perturbation method. This method can significantly reduce the modal truncation error, which is of great significance to the dynamic analysis of engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files.

References

  1. Heylen, W., Lammens, S., Sas, P., et al.: Modal Analysis Theory and Testing, vol. 200. Katholieke Universiteit Leuven, Leuven (1997)

    Google Scholar 

  2. Kim, J.-G., Seo, J., Lim, J.H.: Novel modal methods for transient analysis with a reduced order model based on enhanced Craig–Bampton formulation. Appl. Math. Comput. 344, 30–45 (2019)

    MathSciNet  Google Scholar 

  3. Avitabile, P.: Experimental modal analysis. Sound Vib. 35(1), 20–31 (2001)

    Google Scholar 

  4. Kang, H., Guo, T., Zhu, W.: Multimodal interaction analysis of a cable-stayed bridge with consideration of spatial motion of cables. Nonlinear Dyn. 99(1), 123–147 (2020)

    Article  Google Scholar 

  5. Younis, M.I.: Multi-mode excitation of a clamped–clamped microbeam resonator. Nonlinear Dyn. 80(3), 1531–1541 (2015)

    Article  MathSciNet  Google Scholar 

  6. Geng, X.-F., Ding, H.: Two-modal resonance control with an encapsulated nonlinear energy sink. J. Sound Vib. 520, 116667 (2022)

    Article  Google Scholar 

  7. Geng, X., Ding, H., Wei, K., Chen, L.: Suppression of multiple modal resonances of a cantilever beam by an impact damper. Appl. Math. Mech. 41(3), 383–400 (2020)

    Article  MathSciNet  Google Scholar 

  8. Li, L., Hu, Y., Wang, X.: Eliminating the modal truncation problem encountered in frequency responses of viscoelastic systems. J. Sound Vib. 333(4), 1182–1192 (2014)

    Article  Google Scholar 

  9. Li, L., Hu, Y.: Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems. Mech. Syst. Signal Process. 52, 46–59 (2015)

    Article  Google Scholar 

  10. Braun, S., Ram, Y.: Modal modification of vibrating systems: some problems and their solutions. Mech. Syst. Signal Process. 15(1), 101–119 (2001)

    Article  Google Scholar 

  11. Go, M.-S., Lim, J.H., Kim, J.-G., Hwang, K.-R.: A family of Craig–Bampton methods considering residual mode compensation. Appl. Math. Comput. 369, 124822 (2020)

    MathSciNet  Google Scholar 

  12. Chen, H., Guirao, J.L.G., Cao, D., Jiang, J., Fan, X.: Stochastic Euler–Bernoulli beam driven by additive white noise: global random attractors and global dynamics. Nonlinear Anal. 185, 216–246 (2019)

    Article  MathSciNet  Google Scholar 

  13. Quaranta, G., Carboni, B., Lacarbonara, W.: Damage detection by modal curvatures: numerical issues. J. Vib. Control 22(7), 1913–1927 (2016)

    Article  MathSciNet  Google Scholar 

  14. Nickell, R.E.: Nonlinear dynamics by mode superposition. Comput. Methods Appl. Mech. Eng. 7(1), 107–129 (1976)

    Article  MathSciNet  Google Scholar 

  15. Xiao, W., Li, L., Lei, S.: Accurate modal superposition method for harmonic frequency response sensitivity of non-classically damped systems with lower-higher-modal truncation. Mech. Syst. Signal Process. 85, 204–217 (2017)

    Article  Google Scholar 

  16. Guo, T., Kang, H., Wang, L., Zhao, Y.: Triad mode resonant interactions in suspended cables. Sci. China Phys. Mech. Astron. 59(3), 1–14 (2016)

    Article  Google Scholar 

  17. Yi, Z., Wang, L., Kang, H., Tu, G.: Modal interaction activations and nonlinear dynamic response of shallow arch with both ends vertically elastically constrained for two-to-one internal resonance. J. Sound Vib. 333(21), 5511–5524 (2014)

    Article  Google Scholar 

  18. Wang Jinlin, C.D., Mitao, S.: Dimensional reduction of large dynamical systems: an nonlinear Galerkin method based on model trunction. J. Dyn. Control 7(02), 108–112 (2009)

    Google Scholar 

  19. Dickens, J., Nakagawa, J., Wittbrodt, M.: A critique of mode acceleration and modal truncation augmentation methods for modal response analysis. Comput. Struct. 62(6), 985–998 (1997)

    Article  Google Scholar 

  20. Karasözen, B., Akkoyunlu, C., Uzunca, M.: Model order reduction for nonlinear Schrödinger equation. Appl. Math. Comput. 258, 509–519 (2015)

    MathSciNet  Google Scholar 

  21. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for mems applications. Nonlinear Dyn. 41(1), 211–236 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kerfriden, P., Goury, O., Rabczuk, T., Bordas, S.P.-A.: A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. Comput. Methods Appl. Mech. Eng. 256, 169–188 (2013)

    Article  MathSciNet  Google Scholar 

  23. Bergeot, B., Bellizzi, S., Berger, S.: Dynamic behavior analysis of a mechanical system with two unstable modes coupled to a single nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 95, 105623 (2021)

    Article  MathSciNet  Google Scholar 

  24. Pan, C.-H., Zhu, X.-N., Liu, Z.-R.: A simple approach for reducing the order of equations with higher order nonlinearity. Appl. Math. Comput. 218(17), 8702–8714 (2012)

    MathSciNet  Google Scholar 

  25. Lacarbonara, W.: A theoretical and experimental investigation of nonlinear vibrations of buckled beams. Ph.D. thesis, Virginia Tech (1997)

  26. Qiao, W., Guo, T., Kang, H., Zhao, Y.: Softening-hardening transition in nonlinear structures with an initial curvature: a refined asymptotic analysis. Nonlinear Dyn. 107(1), 357–374 (2022)

    Article  Google Scholar 

  27. Lenci, S., Rega, G.: Axial-transversal coupling in the free nonlinear vibrations of timoshenko beams with arbitrary slenderness and axial boundary conditions. Math. Proc. R. Soc. A Phys. Eng. Sci. 472(2190), 20160057 (2016)

    MathSciNet  Google Scholar 

  28. Guo, T., Kang, H., Wang, L., Zhao, Y.: An inclined cable excited by a non-ideal massive moving deck: an asymptotic formulation. Nonlinear Dyn. 95(1), 749–767 (2019)

    Article  Google Scholar 

  29. Cong Yunyue, G.T.S.X., Houjun, Kang, Yixin, J.: A multiple cable-beam model and modal analysis on in-plane free vibration of cable-stayed bridge with CFRP cables. J. Dyn. Control 15(06), 494–504 (2017)

    Google Scholar 

  30. Arvin, H., Arena, A., Lacarbonara, W.: Nonlinear vibration analysis of rotating beams undergoing parametric instability: lagging-axial motion. Mech. Syst. Signal Process. 144, 106892 (2020)

    Article  Google Scholar 

  31. Xiong, H., Kong, X., Li, H., Yang, Z.: Vibration analysis of nonlinear systems with the bilinear hysteretic oscillator by using incremental harmonic balance method. Commun. Nonlinear Sci. Numer. Simul. 42, 437–450 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zhao, Y., Sun, C., Wang, Z., Peng, J.: Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method. Struct. Eng. Mech. 50(4), 487–500 (2014)

    Article  Google Scholar 

  33. Zhou, S., Song, G., Ren, Z., Wen, B.: Nonlinear analysis of a parametrically excited beam with intermediate support by using multi-dimensional incremental harmonic balance method. Chaos Solitons Fractals 93, 207–222 (2016)

  34. Wang, X., Zhu, W.: A new spatial and temporal harmonic balance method for obtaining periodic steady-state responses of a one-dimensional second-order continuous system. J. Appl. Mech. 84(1), 014501 (2017)

    Article  Google Scholar 

  35. Bloch, A.M., Iserles, A.: Commutators of skew-symmetric matrices. Int. J. Bifurc. Chaos 15(03), 793–801 (2005)

    Article  MathSciNet  Google Scholar 

  36. Bellman, R.: Stability Theory of Differential Equations. Courier Corporation, Chennai (2008)

    Google Scholar 

  37. Hurwitz, A., et al.: On the conditions under which an equation has only roots with negative real parts. Sel. Pap. Math. Trends Control Theory 65, 273–284 (1964)

    Google Scholar 

  38. Su, X., Kang, H., Guo, T., Cong, Y.: Modeling and parametric analysis of in-plane free vibration of a floating cable-stayed bridge with transfer matrix method. Int. J. Struct. Stab. Dyn. 20(01), 2050004 (2020)

    Article  MathSciNet  Google Scholar 

  39. Younis, M.I., Nayfeh, A.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

    Article  Google Scholar 

Download references

Funding

The authors wish to acknowledge the support of the National Natural Science Foundation of China (11972151, 12372006, 12302007, and 12202109), and also the Specific Research Project of Guangxi for Research Bases and Talents (AD23026051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjun Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

SDOF:

$$\begin{aligned}{} & {} {{\ddot{q}}_1} + 2c{{\dot{q}}_1} + \left( \int _0^1 {{\varphi _1}{\varphi _1}{{^{\prime \prime }}^{\prime \prime }}\textrm{d}x} \right. \nonumber \\{} & {} \qquad \left. - \int _0^1 {{\varphi _1}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_1} \nonumber \\{} & {} \qquad -\, \left( \frac{1}{4}\int _0^1 {{\varphi _1}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}{{^\prime }^2}} \textrm{d}x \right. \nonumber \\{} & {} \qquad \left. + \int _0^1 {{\varphi _1}{\varphi _1}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_1}^2\nonumber \\{} & {} \qquad -\, \frac{1}{4}\int _0^1 {{\varphi _1}{\varphi _1}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _1}{{^\prime }^2}} \textrm{d}x \cdot {q_1}^3\nonumber \\{} & {} \quad = \int _0^1 {{\varphi _1}\textrm{d}x} \cdot F\cos \Omega t \end{aligned}$$
(35)

Two-DOF:

$$\begin{aligned}{} & {} {{\ddot{q}}_1} + 2c{{\dot{q}}_1} + \left( \int _0^1 {{\varphi _1}{\varphi _1}{{^{\prime \prime }}^{\prime \prime }}\textrm{d}x}\right. \nonumber \\{} & {} \qquad \left. - \int _0^1 {{\varphi _1}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_1} \\{} & {} \qquad +\, \varepsilon \left( \int _0^1 {{\varphi _1}{\varphi _2}{{^{\prime \prime }}^{\prime \prime }}\textrm{d}x} \right. \nonumber \\{} & {} \qquad \left. - \int _0^1 {{\varphi _1}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _2}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_2} \\{} & {} \quad = \left( \frac{1}{4}\int _0^1 {{\varphi _1}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}{{^\prime }^2}} \textrm{d}x\right. \nonumber \\{} & {} \qquad \left. + \int _0^1 {{\varphi _1}{\varphi _1}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_1}^2 \\{} & {} \qquad +\, \varepsilon \left( \frac{1}{2}\int _0^1 {{\varphi _1}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {\varphi _2}^\prime } \textrm{d}x \right. \nonumber \\{} & {} \qquad \left. + \int _0^1 {{\varphi _1}{\varphi _1}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _2}^\prime {w_0}^\prime } \textrm{d}x \right. \\{} & {} \qquad \left. +\, \int _0^1 {{\varphi _1}{\varphi _2}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_1}{q_2} \\{} & {} \qquad +\, {\varepsilon ^2}\left( \frac{1}{4}\int _0^1 {{\varphi _1}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _2}{{^\prime }^2}\textrm{d}x} \right. \nonumber \\{} & {} \qquad \left. + \int _0^1 {{\varphi _1}{\varphi _2}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _2}^\prime {w_0}^\prime \textrm{d}x} \right) \cdot {q_2}^2 \\{} & {} \qquad +\, \frac{1}{4}\int _0^1 {{\varphi _1}{\varphi _1}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _1}{{^\prime }^2}} \textrm{d}x \cdot {q_1}^3 \\{} & {} \qquad +\, \frac{1}{4}\varepsilon \left( 2\int _0^1 {{\varphi _1}{\varphi _1}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _1}^\prime {\varphi _2}^\prime } \textrm{d}x \right. \\{} & {} \qquad \left. +\, \int _0^1 {{\varphi _1}{\varphi _2}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _2}{{^\prime }^2}} \textrm{d}x \right) \cdot {q_1}^2{q_2} \\{} & {} \qquad +\, \frac{1}{4}{\varepsilon ^2}\left( 2\int _0^1 {{\varphi _1}{\varphi _2}^{\prime \prime }dx} \cdot \int _0^1 {{\varphi _1}^\prime {\varphi _2}^\prime } \textrm{d}x\right. \\{} & {} \qquad \left. +\, \int _0^1 {{\varphi _1}{\varphi _1}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _2}{{^\prime }^2}} \textrm{d}x \right) \cdot {q_1}{q_2}^2 \\{} & {} \qquad +\, \frac{1}{4}{\varepsilon ^3}\int _0^1 {{\varphi _1}{\varphi _2}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _2}{{^\prime }^2}} \textrm{d}x \cdot {q_2}^3\\{} & {} \qquad +\, \int _0^1 {{\varphi _1}\textrm{d}x} \cdot F\cos \Omega t \end{aligned}$$
$$\begin{aligned}{} & {} \varepsilon {{\ddot{q}}_2} + 2c\varepsilon {{\dot{q}}_2} + \varepsilon \left( \int _0^1 {{\varphi _2}{\varphi _1}{{^{\prime \prime }}^{\prime \prime }}\textrm{d}x} \right. \nonumber \\{} & {} \qquad \left. -\, \int _0^1 {{\varphi _2}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_1} \nonumber \\{} & {} \qquad +\, {\varepsilon ^2}\left( \int _0^1 {{\varphi _2}{\varphi _2}{{^{\prime \prime }}^{\prime \prime }}\textrm{d}x}\right. \nonumber \\{} & {} \qquad \left. - \int _0^1 {{\varphi _2}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _2}^\prime {w_0}^\prime } \textrm{d}x\right) \cdot {q_2} \nonumber \\{} & {} \quad = \varepsilon \left( \frac{1}{4}\int _0^1 {{\varphi _2}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}{{^\prime }^2}} \textrm{d}x \right. \nonumber \\{} & {} \qquad \left. + \int _0^1 {{\varphi _2}{\varphi _1}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_1}^2 \nonumber \\{} & {} \qquad +\, {\varepsilon ^2}\left( \frac{1}{2}\int _0^1 {{\varphi _2}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {\varphi _2}^\prime } \textrm{d}x + \int _0^1 {{\varphi _2}{\varphi _1}^{\prime \prime }\textrm{d}x} \right. \nonumber \\{} & {} \qquad \left. \int _0^1 {{\varphi _2}^\prime {w_0}^\prime } \textrm{d}x + \int _0^1 {{\varphi _2}{\varphi _2}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _1}^\prime {w_0}^\prime } \textrm{d}x \right) \cdot {q_1}{q_2} \nonumber \\{} & {} \qquad +\, {\varepsilon ^3}\left( \frac{1}{4}\int _0^1 {{\varphi _2}{w_0}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _2}{{^\prime }^2}\textrm{d}x} \right. \nonumber \\{} & {} \qquad \left. + \int _0^1 {{\varphi _2}{\varphi _2}^{\prime \prime }\textrm{d}x} \int _0^1 {{\varphi _2}^\prime {w_0}^\prime \textrm{d}x} \right) \nonumber \\{} & {} \quad \cdot {q_2}^2 + \frac{1}{4}\varepsilon \int _0^1 {{\varphi _2}{\varphi _1}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _1}{{^\prime }^2}} \textrm{d}x \cdot {q_1}^3 \nonumber \\{} & {} \qquad +\, \frac{1}{4}{\varepsilon ^2}\left( 2\int _0^1 {{\varphi _2}{\varphi _1}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _1}^\prime {\varphi _2}^\prime } \textrm{d}x \right. \nonumber \\{} & {} \qquad \left. +\, \int _0^1 {{\varphi _2}{\varphi _2}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _2}{{^\prime }^2}} \textrm{d}x \right) \cdot {q_1}^2{q_2} \nonumber \\{} & {} \qquad +\, \frac{1}{4}{\varepsilon ^3}\left( 2\int _0^1 {{\varphi _2}{\varphi _2}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _1}^\prime {\varphi _2}^\prime } \textrm{d}x \right. \nonumber \\{} & {} \qquad \left. +\, \int _0^1 {{\varphi _2}{\varphi _1}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _2}{{^\prime }^2}} \textrm{d}x \right) \cdot {q_1}{q_2}^2 \nonumber \\{} & {} \qquad +\, \frac{1}{4}{\varepsilon ^4}\int _0^1 {{\varphi _2}{\varphi _2}^{\prime \prime }\textrm{d}x} \cdot \int _0^1 {{\varphi _2}{{^\prime }^2}} \textrm{d}x \cdot {q_2}^3 \nonumber \\{} & {} \qquad +\, \varepsilon \int _0^1 {{\varphi _2}\textrm{d}x} \cdot F\cos \Omega t \end{aligned}$$
(36)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Yuan, Q., Su, X. et al. Modal truncation method for continuum structures based on matrix norm: modal perturbation method. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09628-2

Keywords

Mathematics Subject Classification

Navigation