Skip to main content
Log in

Folding angle and wing flexibility influence the flight performance of origami winged fruits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Winged fruits possess a unique flight mechanism relying on simple geometric structures rather than neuromuscular control. This study proposes an innovative approach using origami techniques to create three-winged model fruits, serving as a proxy for understanding the flight dynamics of natural winged fruits. Paper is employed to simulate inherent wing flexibility, with the option to add plastic frames for rigidity. We comprehensively investigate the free fall motion of both rigid and flexible winged fruits through experimental and numerical analyses. Velocity–time curves reveal a three-stage descent pattern—acceleration, deceleration, and steady states. The overshoot phenomenon is attributed to rapid lift increase due to leading-edge vortices attaching stably to the wings. This insight sheds light on aerodynamics governing fruit flight. Compared with rigid wings, flexible wings exhibit two key properties—slower descent and higher self-orienting capability—that facilitate a more stable and longer-distance dispersal of seeds under crosswind conditions. Our study demonstrates the potential benefits of flexible wings in natural seed distribution. This study advances our understanding of winged fruit flight dynamics, utilizing origami as a powerful tool for biomimetic investigations. The findings have broad implications, from improving aerodynamic designs to developing efficient micro air vehicles and electronic microfliers, and understanding seed dispersal evolution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data is available upon request from the corresponding authors.

References

  1. Harper, J.L.: Population Biology of Plants. Academic Press, London, UK (1977)

    Google Scholar 

  2. Van der Pijl, L.: Principles of Dispersal in Higher Plants, vol. 214. Springer, New Jersey (1982)

    Book  Google Scholar 

  3. Ridley, H.: The Dispersal of Plants Throughout the World. Reeve and Ashford, Kent (1930)

    Google Scholar 

  4. Nathan, R.: Long-distance dispersal of plants. Science 313, 786–788 (2006)

    Article  Google Scholar 

  5. Howe, H.F., Smallwood, J.: Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982)

    Article  Google Scholar 

  6. Nathan, R., Schurr, F.M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., Tsoar, A.: Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008)

    Article  Google Scholar 

  7. Cain, M.L., Milligan, B.G., Strand, A.E.: Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000)

    Article  Google Scholar 

  8. Howe, H.F.: Monkey dispersal and waste of a neotropical fruit. Ecology 61, 944–959 (1980)

    Article  Google Scholar 

  9. Berg, R.Y.: Myrmecochorous plants in Australia and their dispersal by ants. Aust. J. Bot. 23, 475–508 (1975)

    Article  Google Scholar 

  10. Green, D.S.: The terminal velocity and dispersal of spinning samaras. Am. J. Bot. 67, 1218–1224 (1980)

    Article  Google Scholar 

  11. Burrows, F.: Wind-borne seed and fruit movement. New Phytol. 75, 405–418 (1975)

    Article  Google Scholar 

  12. Beattie, A.J., Lyons, N.: Seed dispersal in Viola (Violaceae): adaptations and strategies. Am. J. Bot. 62, 714–722 (1975)

    Article  Google Scholar 

  13. Armon, S., Efrati, E., Kupferman, R., Sharon, E.: Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011)

    Article  Google Scholar 

  14. Li, S., Zhang, Y., Liu, J.: Seed ejection mechanism in an Oxalis species. Sci. Rep. 10, 1–9 (2020)

    Google Scholar 

  15. Hofhuis, H., Moulton, D., Lessinnes, T., Routier-Kierzkowska, A.-L., Bomphrey, R.J., Mosca, G., Reinhardt, H., Sarchet, P., Gan, X., Tsiantis, M., et al.: Morphomechanical innovation drives explosive seed dispersal. Cell 166, 222–233 (2016)

    Article  Google Scholar 

  16. Van Der Burgt, X.M.: Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae – Caesalpinioideae) in Gabon. J. Trop. Ecol. 13, 145–151 (1997)

    Article  Google Scholar 

  17. Galstyan, A., Hay, A.: Snap, crack and pop of explosive fruit. Curr. Opin. Genet. Dev. 51, 31–36 (2018)

    Article  Google Scholar 

  18. Nathan, R., Katul, G.G., Horn, H.S., Thomas, S.M., Oren, R., Avissar, R., Pacala, S.W., Levin, S.A.: Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002)

    Article  Google Scholar 

  19. Minami, S., Azuma, A.: Various flying modes of wind-dispersal seeds. J. Theor. Biol. 225, 1–14 (2003)

    Article  Google Scholar 

  20. Augspurger, C.K.: Morphology and dispersal potential of wind-dispersed diaspores of neotropical trees. Am. J. Bot. 73, 353–363 (1986)

    Article  Google Scholar 

  21. Tackenberg, O., Poschlod, P., Kahmen, S.: Dandelion seed dispersal: the horizontal wind speed does not matter for long-distance dispersal-it is updraft! Plant Biol. 5, 451–454 (2003)

    Article  Google Scholar 

  22. Norberg, R.A.: Autorotation, self-stability, and structure of single-winged fruits and seeds (Samaras) with comparative remarks on animal flight. Biol. Rev. 48, 561 (1973)

    Article  Google Scholar 

  23. Lentink, D., Dickson, W.B., van Leeuwen, J.L., Dickinson, M.H.: Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009)

    Article  Google Scholar 

  24. Yasuda, K., Azuma, A.: The autorotation boundary in the flight of samaras. J. Theor. Biol. 185, 313–320 (1997)

    Article  Google Scholar 

  25. Azuma, A., Yasuda, K.: Flight performance of rotary seeds. J. Theor. Biol. 138, 23–53 (1989)

    Article  Google Scholar 

  26. Liebe, R.: Flow Phenomena in Nature: Inspiration, Learning and Application, vol. 2. WIT press, Ashurst, UK (2007)

    Google Scholar 

  27. McCutchen, C.W.: The spinning rotation of ash and tulip tree samaras. Science 197, 691–692 (1977)

    Article  Google Scholar 

  28. Cain, S.A.: The identification of species in fossil pollen of Pinus by size-frequency determinations. Am. J. Bot. 27, 301–308 (1940)

    Google Scholar 

  29. Rabault, J., Fauli, R.A., Carlson, A.: Curving to fly: synthetic adaptation unveils optimal flight performance of whirling fruits. Phys. Rev. Lett. 122, 024501 (2019)

    Article  Google Scholar 

  30. Fauli, R.A., Rabault, J., Carlson, A.: Effect of wing fold angles on the terminal descent velocity of double-winged autorotating seeds, fruits, and other diaspores. Phys. Rev. E 100, 013108 (2019)

    Article  Google Scholar 

  31. Azuma, A.: The Biokinetics of Flying and Swimming, 2nd edn. American Institute of Aeronautics and Astronautics, Inc., Reston, VA (2006)

    Book  Google Scholar 

  32. Ashton, P., Morley, R., Heckenhauer, J., Prasad, V.: The magnificent Dipterocarps: précis for an Epitaph? Kew Bull. 76, 87–125 (2021)

    Article  Google Scholar 

  33. Ashton, P.S.: Dipterocarp biology as a window to the understanding of tropical forest structure. Annu. Rev. Ecol. Syst. 19, 347–370 (1988)

    Article  Google Scholar 

  34. Ashton, P.S.: Dipterocarpaceae. In Flora Malesiana Series I Spermatophyta, Volume 9, C.G.G.J.v. Steenis, ed. (Djakarta: Noordhoff-Kolff), pp. 237–552 (1982)

  35. Bansal, M., Morley, R.J., Nagaraju, S.K., Dutta, S., Mishra, A.K., Selveraj, J., Kumar, S., Niyolia, D., Harish, S.M., Abdelrahim, O.B.: Southeast Asian Dipterocarp origin and diversification driven by Africa–India floristic interchange. Science 375, 455–460 (2022)

    Article  Google Scholar 

  36. Limacher, E., Rival, D.E.: On the distribution of leading-edge vortex circulation in samara-like flight. J. Fluid Mech. 776, 316–333 (2015)

    Article  Google Scholar 

  37. Tam, D., Bush, J.W., Robitaille, M., Kudrolli, A.: Tumbling dynamics of passive flexible wings. Phys. Rev. Lett. 104, 184504 (2010)

    Article  Google Scholar 

  38. Tam, D.: Flexibility increases lift for passive fluttering wings. J. Fluid Mech. (2015). https://doi.org/10.1017/jfm.2015.1

    Article  Google Scholar 

  39. Varshney, K., Chang, S., Wang, Z.J.: Unsteady aerodynamic forces and torques on falling parallelograms in coupled tumbling-helical motions. Phys. Rev. E 87, 053021 (2013)

    Article  Google Scholar 

  40. Wang, L., Wu, T.: Effect of wing flexibility on the lift force generated by a 2D model insect wing flapping in hover mode. Int. J. Appl. Mech. 13, 2150056 (2021)

    Article  Google Scholar 

  41. Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hirai, N., Iima, M.: Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspiration Biomim. 7, 025002 (2012)

    Article  Google Scholar 

  42. Zhai, Z., Wu, L., Jiang, H.: Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, 041319 (2021)

    Article  Google Scholar 

  43. Novelino, L.S., Ze, Q., Wu, S., Paulino, G.H., Zhao, R.: Untethered control of functional origami microrobots with distributed actuation. Proc. Natl. Acad. Sci. U.S.A. 117, 24096–24101 (2020)

    Article  Google Scholar 

  44. Tang, R., Huang, H., Tu, H., Liang, H., Liang, M., Song, Z., Xu, Y., Jiang, H., Yu, H.: Origami-enabled deformable silicon solar cells. Appl. Phys. Lett. 104, 083501 (2014)

    Article  Google Scholar 

  45. Fu, H., Nan, K., Bai, W., Huang, W., Bai, K., Lu, L., Zhou, C., Liu, Y., Liu, F., Wang, J., et al.: Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 17, 268–276 (2018)

    Article  Google Scholar 

  46. Callens, S.J.P., Zadpoor, A.A.: From flat sheets to curved geometries: origami and kirigami approaches. Mater. Today 21, 241–264 (2018)

    Article  Google Scholar 

  47. Rogers, J., Huang, Y., Schmidt, O.G., Gracias, D.H.: Origami MEMS and NEMS. MRS Bull. 41, 123–129 (2016)

    Article  Google Scholar 

  48. Masana, R., Dalaq, A.S., Khazaaleh, S., Daqaq, M.: The kresling origami spring: a review and assessment. Smart Mater. Struct. (2024). https://doi.org/10.1088/1361-665X/ad2f6f

    Article  Google Scholar 

  49. Fauli, R., Rabault, J., Carlson, A.: Minimal terminal descent velocity of autorotating seeds, fruits and other diaspores with curved wings. Dated: November 20, 2019, (2018)

  50. Appanah, S., Turnbull, J.: A review of taxonomy, ecology and silviculture. Center for International Forestry Research (1998)

  51. Sakai, S.: General flowering in lowland mixed dipterocarp forests of South-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002)

    Article  Google Scholar 

  52. Ghazoul, J.: Dipterocarp Biology, Ecology, and Conservation. Oxford University Press, Oxford (2016)

    Book  Google Scholar 

  53. Peyton, B.: Advanced Origami Hats and Gifts. SARL Passion Origami (2022)

    Google Scholar 

  54. Tsilingiris, P.T.: Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C. Energy Convers. Manag. 49, 1098–1110 (2008)

    Article  Google Scholar 

  55. Caldichoury, I., Paz, R., Del Pin, F.: ICFD Theory Manual Incompressible Fluid Solver in LS-DYNA. Livermore Software Technology Corp (2014)

    Google Scholar 

  56. Campo, L.D.: The biomechanics of ballistochory in impatiens pallida. In: Physics & Astronomy. Pomona College (2008)

  57. Idelsohn, S.R., Del Pin, F., Rossi, R., Oñate, E.: Fluid-structure interaction problems with strong added-mass effect. Int. J. Numer. Methods Eng. 80, 1261–1294 (2009)

    Article  MathSciNet  Google Scholar 

  58. Taylor, G.K., Nudds, R.L., Thomas, A.L.R.: Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707–711 (2003)

    Article  Google Scholar 

  59. Smith, J.R., Bagchi, R., Kettle, C.J., Maycock, C., Khoo, E., Ghazoul, J.: Predicting the terminal velocity of dipterocarp fruit. Biotropica 48, 154–158 (2016)

    Article  Google Scholar 

  60. Munson, B.R., Okiishi, T.H., Huebsch, W.W., Rothmayer, A.P.: Fluid Mechanics. Wiley, Singapore (2013)

    Google Scholar 

  61. Hunt, J.C., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. In: Center for Turbulence Research Summer Program (1988)

  62. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  Google Scholar 

  63. Willmott, A.P., Ellington, C.P.: The mechanics of flight in the hawkmoth Manduca sexta.II. Aerodynamic consequences of kinematic and morphological variation. J. Exp. Biol. 200, 2723–2745 (1997)

    Article  Google Scholar 

  64. Willmott, A.P., Ellington, C.P., Thomas, A.L.R.: Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 352, 303–316 (1997)

    Article  Google Scholar 

  65. Dickinson, M.H., Lehmann, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)

    Article  Google Scholar 

  66. Usherwood, J.R., Ellington, C.P.: The aerodynamics of revolving wings-I. Model hawkmoth wings. J. Exp. Biol. 205, 1547–1564 (2002)

    Article  Google Scholar 

  67. Addo-Akoto, R., Han, J.-S., Han, J.-H.: Roles of wing flexibility and kinematics in flapping wing aerodynamics. J. Fluids Struct. 104, 103317 (2021)

    Article  Google Scholar 

  68. Kim, B.H., Li, K., Kim, J.-T., Park, Y., Jang, H., Wang, X., Xie, Z., Won, S.M., Yoon, H.-J., Lee, G., et al.: Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 597, 503–510 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Taiwan University and the National Science and Technology Council of Taiwan. We thank Professor Jing-Tang Yang for the technical support of the high-speed camera and Brian Hsiao of SIMWARE Inc. for the technical support of LS-DYNA simulations. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

Funding

The funding was provided by National Taiwan University and National Science and Technology Council

Author information

Authors and Affiliations

Authors

Contributions

H.-T.Y. and J.-Y.J. designed research; J.-F.C., Y.-C.H., Y.-C.L., and Y.-C.Y. performed experiments; J.-F.C. performed simulations; J.-F.C. and Y.-C.H. analyzed data; B.P. developed the origami three-winged fruits; and J.-F.C., M.-J.H., H.-T.Y., and J.-Y.J. wrote the paper.

Corresponding authors

Correspondence to Hon-Tsen Yu or Jia-Yang Juang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B. Peyton—Retired

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1291 KB)

Supplementary file2 (MP4 5265 KB)

Supplementary file3 (MP4 5349 KB)

Supplementary file4 (MP4 3294 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, JF., Hsu, YC., Yen, YC. et al. Folding angle and wing flexibility influence the flight performance of origami winged fruits. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09618-4

Keywords

Navigation