Skip to main content
Log in

Simple Circuit Implementation of String Scaling Fractional-order Memristor with Fixed Valid Frequency Range

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Scaling fractional-order memristors (fracmemristors) are a new research topic. Although remarkable progress has been made in the study of such memristors, there are some problems that require further study, for example, the effect of input signals on the instantaneous valid frequency range, failure to obtain the corresponding time-domain electrical characteristic expression of the fracmemristor, and the requirement of circuit schematics for using numerous memristor emulators. Most memristors in string scaling fracmemristor (SSF) circuit configurations must be of the floating-type. Therefore, the design and implementation of the circuit schematic are challenging. Motivated by this need, a SSF with a fixed valid frequency range was implemented using a simple circuit in this study. First, the circuit configuration of the SSF with a fixed valid frequency range and high approximation benefit was proposed. Subsequently, a simple circuit schematic of an incremental and decremental SSF was designed, and the corresponding time-domain electrical characteristic expression of the fracmemristor was obtained. Finally, rich analysis results for the electrical characteristics of the SSF were obtained. A circuit implementation of the SSF was used to verify the applicability of the theory. The main contributions of this study are as follows: the SSF circuit configuration and its simple circuit schematic with a fixed valid frequency range and high approximation benefit were devised, and the corresponding expressions of the time-domain electrical characteristics and the analysis results for the electrical characteristics were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chua, L.O.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  3. Jin, P.P., Wang, G.Y., Liang, Y., Iu, H.H.-C., Chua, L.O.: Neuromorphic dynamics of Chua corsage memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4419–4432 (2021)

    Article  Google Scholar 

  4. Liang, Y., Zhu, Q., Wang, G.Y., Nath, S.K., Iu, H.H.C., Nandi, S.K., Elliman, R.G.: Universal dynamics analysis of locally-active memristors and its applications. IEEE Trans. Circuits Syst. I Regul. Pap. 69(3), 1278–1290 (2021)

    Article  Google Scholar 

  5. Yu, D.S., Zhao, X.Q., Sun, T.T., Iu, H.H.C., Fernando, T.: A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Exp. Briefs 67(7), 1334–1338 (2020)

    Google Scholar 

  6. Cao, H.B., Wang, F.Q.: Spreading operation frequency ranges of memristor emulators via a new sine-based method. IEEE Trans. Very Large Scale Integr. VLSI Syst. 29(4), 617–630 (2021)

    Article  Google Scholar 

  7. Ielmini, D.: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31(6), 063002 (2016)

    Article  Google Scholar 

  8. Wang, Z.R., Wu, H.Q., Burr, G.W., Hwang, C.S., Wang, K.L., Xia, Q.F., Yang, J.J.: Resistive switching materials for information processing. Nat. Rev. Mater. 5(3), 173–195 (2020)

    Article  Google Scholar 

  9. Bao, H., Hua, Z.Y., Li, H.Z., Chen, M., Bao, B.C.: Discrete memristor hyperchaotic maps. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4534–4544 (2021)

    Article  Google Scholar 

  10. Wang, X.Y., Dong, C.T., Zhou, P.F., Nandi, S.K., Nath, S.K., Elliman, R.G., Iu, H.H.-C., Kang, S.-M., Eshraghian, J.K.: Low-variance memristor-based multi-level ternary combinational logic. IEEE Trans. Circuits Syst. I Regul. Pap. 69(6), 2423–2434 (2022)

    Article  Google Scholar 

  11. Xu, Q., Ju, Z., Ding, S., Feng, C., Chen, M., Bao, B.: Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cogn. Neurodyn. 16(5), 1221–1231 (2022)

    Article  Google Scholar 

  12. Ding, S., Wang, N., Bao, H., Chen, B., Wu, H., Xu, Q.: Memristor synapse-coupled piecewise-linear simplified hopfield neural network: dynamics analysis and circuit implementation. Chaos Solitons Fractals 166, 112899 (2023)

    Article  MathSciNet  Google Scholar 

  13. Lin, P., Li, C., Wang, Z.R., Li, Y.N., Jiang, H., Song, W.H., Rao, M.Y., Zhuo, Y., Upadhyay, N.K., Barnell, M., et al.: Three-dimensional memristor circuits as complex neural networks. Nat. Electron. 3(4), 225–232 (2020)

    Article  Google Scholar 

  14. Yao, P., Wu, H.Q., Gao, B., Tang, J.S., Zhang, Q.T., Zhang, W.Q., Yang, J.J., Qian, H.: Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020)

    Article  Google Scholar 

  15. Yi, S.-I., Kendall, J.D., Williams, R.S., Kumar, S.: Activity-difference training of deep neural networks using memristor crossbars. Nat. Electron. 1–7 (2022)

  16. Xu, Q., Chen, X., Chen, B., Wu, H., Li, Z., Bao, H.: Dynamical analysis of an improved fitzhugh-nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 1–13 (2023)

  17. Pu, Y.F., Yuan, X.: Fracmemristor: fractional-order memristor. IEEE Access 4, 1872–1888 (2016)

    Article  Google Scholar 

  18. Pu, Y.F., Yuan, X., Yu, B.: Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2903–2916 (2018)

    Article  MathSciNet  Google Scholar 

  19. Pu, Y.F., Zhang, N., Wang, H.: Fractional-order memristive predictor: arbitrary-order string scaling fracmemristor based prediction model of trading price of future. IEEE Intell. Syst. 35(2), 66–78 (2020)

    Article  Google Scholar 

  20. Pu, Y.F., Yu, B., He, Q.Y., Yuan, X.: Fractional-order memristive neural synaptic weighting achieved by pulse-based fracmemristor bridge circuit. Front. Inf. Technol. Electron. Eng. 22(6), 862–876 (2021)

    Article  Google Scholar 

  21. Pu, Y.F., Yu, B., He, Q.Y., Yuan, X.: Fracmemristor oscillator: fractional-order memristive chaotic circuit. IEEE Trans. Circuits Syst. I Regul. Pap. (2022)

  22. Song, S., Zhang, B., Song, X., Zhang, Y., Zhang, Z., Li, W.: Fractional-order adaptive neuro-fuzzy sliding mode h control for fuzzy singularly perturbed systems. J. Frankl. Inst. 356(10), 5027–5048 (2019)

    Article  MathSciNet  Google Scholar 

  23. He, P., Wen, J., Liu, F., Luan, X., Stojanovic, V.: Finite-time control of discrete-time semi-Markov jump linear systems: a self-triggered MPC approach. J. Frankl. Inst. 360, 841–861 (2022)

    MathSciNet  Google Scholar 

  24. Wan, H., Luan, X., Stojanovic, V., Liu, F.: Self-triggered finite-time control for discrete-time Markov jump systems. Inf. Sci. Int. J. 634, 101–121 (2023)

    Google Scholar 

  25. Volkov, A.G., Tucket, C., Reedus, J., Volkova, M.I., Markin, V.S., Chua, L.: Memristors in plants. Plant Signal. Behav. 9(3), 28152 (2014)

    Article  Google Scholar 

  26. Volkov, A.G., Nyasani, E.K., Blockmon, A.L., Volkova, M.I.: Memristors: memory elements in potato tubers. Plant Signal. Behav. 10(10), 1071750 (2015)

    Article  Google Scholar 

  27. Volkov, A.G., Nyasani, E.K., Tuckett, C., Greeman, E.A., Markin, V.S.: Electrophysiology of pumpkin seeds: memristors in vivo. Plant Signal. Behav. 11(4), 1151600 (2016)

    Article  Google Scholar 

  28. Wang, F.Z., Shi, L.P., Wu, H.Q., Helian, N., Chua, L.O.: Fractional memristor. Appl. Phys. Lett. 111(24), 243502 (2017)

  29. Si, G.Q., Diao, L.J., Zhu, J.W.: Fractional-order charge-controlled memristor: theoretical analysis and simulation. Nonlinear Dyn. 87(4), 2625–2634 (2017)

    Article  Google Scholar 

  30. Hamed, E.M., Fouda, M.E., Radwan, A.G.: Multiple pinch-off points in memristive equations: analysis and experiments. IEEE Trans. Circuits Syst. I Regul. Pap. 66(8), 3052–3063 (2019)

    Article  MathSciNet  Google Scholar 

  31. He, S., Zhan, D.L., Wang, H.H., Sun, K.H., Peng, Y.X.: Discrete memristor and discrete memristive systems. Entropy 24(6), 786 (2022)

    Article  MathSciNet  Google Scholar 

  32. Lu, Y.M., Wang, C.H., Deng, Q.L., Xu, C.: The dynamics of a memristor-based Rulkov neuron with the fractional-order difference. Chin. Phys. B (2022)

  33. Pu, Y.F., Yu, B., Yuan, X.: Ladder scaling fracmemristor: a second emerging circuit structure of fractional-order memristor. IEEE Des. Test 38(3), 104–111 (2021)

    Article  Google Scholar 

  34. He, Q.Y., Pu, Y.F., Yu, B., Yuan, X.: Electrical characteristics of quadratic chain scaling fractional-order memristor. IEEE Trans. Circuits Syst. II Exp. Briefs 69(11), 4558–4562 (2022)

    Google Scholar 

  35. Nilsson, J.W., Riedel, S.: Electric Circuits. Prentice Hall, New York (2014)

    Google Scholar 

  36. Yu, B., Pu, Y.F., He, Q.Y., Yuan, X.: Principle and application of frequency-domain characteristic analysis of fractional-order memristor. Micromachines 13(9), 1512 (2022)

    Article  Google Scholar 

  37. He, Q.Y., Pu, Y.F., Yu, B., Yuan, X.: Scaling fractal-Chuan fractance approximation circuits of arbitrary order. Circuits Syst. Signal Process. 38(11), 4933–4958 (2019)

    Article  Google Scholar 

  38. Yuan, X.: Mathematical Principles of Fractance Approximation Circuits. Science Press, Beijing (2015)

    Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China under Grant Number 62171303, the China South Industries Group Corporation (Chengdu) Fire Control Technology Center Project (non-secret) under Grant Number HK20-03, and the National Key Research and Development Program Foundation of China under Grant Number 2018YFC0830300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fei Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Pu, YF., He, QY. et al. Simple Circuit Implementation of String Scaling Fractional-order Memristor with Fixed Valid Frequency Range. Nonlinear Dyn 112, 10391–10415 (2024). https://doi.org/10.1007/s11071-024-09568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09568-x

Keywords

Navigation