Skip to main content
Log in

A comparative study on vibration suppression and energy harvesting via mono-, bi-, and tri-stable piezoelectric nonlinear energy sinks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the dynamical responses and performances of mono-, bi-, and tri-stable nonlinear energy sinks in simultaneous vibration suppression and energy harvesting as well as solely vibration mitigation. To this end, a realizable multi-stable nonlinear energy sink composed of a bimorph cantilever beam and arrays of magnets is considered for vibration mitigation. The target vibrating structure is a simply-supported beam under a harmonic excitation. The proposed absorber can exhibit multi-stability based on the magnet gaps. First, using extended Hamilton’s principle, the coupled continuous magneto-electromechanical equations governing the system are obtained. Next, the bifurcations of the absorber fixed points that lead to different stability states are analyzed. Then, the time- and frequency-responses of the coupled system are studied using time integration. The results show that the bi- and tri-stable absorbers perform well in case of strongly modulated responses. Furthermore, the response of the coupled system is verified using the harmonic balance method and pseudo-arclength continuation. Next, the potential well escape method based on the harmonic balance solution is exploited to investigate the strongly modulated response emergence and disappearance as well as its variations with the system parameters. The coupling mechanism of the nonlinear absorber to the host beam is also studied using linearization and compared with the harmonic balance solution. In addition, in order to compare the performances of the bi-stable and tri-stable absorbers, energy-based analyses are performed. The results reveal the average harvested power per average kinetic energy of the main system for a bi-stable absorber is higher than a tri-stable absorber. Furthermore, the bi-stable absorber can mitigate the host structure vibration more than the tri-stable absorber. Finally, it is observed that the bi-stable absorber suppresses the vibration more than its corresponding mono-stable absorber and harvests more energy over a broader frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this manuscript as no datasets were generated or analyzed during the current study.

References

  1. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–1079 (2012)

    Article  Google Scholar 

  2. Leadenham, S., Erturk, A.: Mechanically and electrically nonlinear non-ideal piezoelectric energy harvesting framework with experimental validations. Nonlinear Dyn. 99(1), 625–641 (2020)

    Article  Google Scholar 

  3. Rezaei, M., Talebitooti, R., Friswell, M.I.: Efficient acoustic energy harvesting by deploying magnetic restoring force. Smart Mater. Struct. 28(10), 105037 (2019)

    Article  Google Scholar 

  4. Xing, J., et al.: Investigating the effect of surface protrusions on galloping energy harvesting. Appl. Phys. Lett. 122(15), 153902 (2023)

    Article  Google Scholar 

  5. Xing, J., et al.: Investigating the coupled effect of different aspect ratios and leeward protrusion lengths on vortex-induced vibration (VIV)-galloping energy harvesting: modelling and experimental validation. J. Sound Vib. 568, 118054 (2024)

    Article  Google Scholar 

  6. Rezaei, M., Talebitooti, R., Rahmanian, S.: Efficient energy harvesting from nonlinear vibrations of PZT beam under simultaneous resonances. Energy 182, 369–380 (2019)

    Article  Google Scholar 

  7. Elvin, N.G., Elvin, A.A.: An experimentally validated electromagnetic energy harvester. J. Sound Vib. 330(10), 2314–2324 (2011)

    Article  Google Scholar 

  8. Khan, F.U., Qadir, M.U.: State-of-the-art in vibration-based electrostatic energy harvesting. J. Micromech. Microeng. 26(10), 103001 (2016)

    Article  Google Scholar 

  9. Chen, J., Wang, Z.L.: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1(3), 480–521 (2017)

    Article  Google Scholar 

  10. Ali, S.F., Adhikari, S.: Energy harvesting dynamic vibration absorbers. J. Appl. Mech. 80(4), 041004 (2013)

    Article  Google Scholar 

  11. Harne, R.L.: Development and testing of a dynamic absorber with corrugated piezoelectric spring for vibration control and energy harvesting applications. Mech. Syst. Signal Process. 36(2), 604–617 (2013)

    Article  Google Scholar 

  12. Abdelmoula, H., et al.: Control of base-excited dynamical systems through piezoelectric energy harvesting absorber. Smart Mater. Struct. 26(9), 095013 (2017)

    Article  Google Scholar 

  13. Zoka, H., Afsharfard, A.: Double stiffness vibration suppressor and energy harvester: an experimental study. Mech. Syst. Signal Process. 121, 1–13 (2019)

    Article  Google Scholar 

  14. Rezaei, M., et al.: Integrating PZT layer with tuned mass damper for simultaneous vibration suppression and energy harvesting considering exciter dynamics: an analytical and experimental study. J. Sound Vib. 546, 117413 (2023)

    Article  Google Scholar 

  15. Bab, S., et al.: Vibration mitigation of a rotating beam under external periodic force using a nonlinear energy sink (NES). J. Vib. Control 23(6), 1001–1025 (2017)

    Article  MathSciNet  Google Scholar 

  16. Mamaghani, A.E., Khadem, S., Bab, S.: Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 86(3), 1761–1795 (2016)

    Article  Google Scholar 

  17. Saeed, A.S., Abdul Nasar, R., Alhudeifat, M.A.: A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types. Nonlinear Dyn. 111(1), 1–37 (2023)

    Article  Google Scholar 

  18. Kecik, K.: Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber. Mech. Syst. Signal Process. 106, 198–209 (2018)

    Article  Google Scholar 

  19. Kecik, K.: Simultaneous vibration mitigation and energy harvesting from a pendulum-type absorber. Commun. Nonlinear Sci. Numer. Simul. 92, 105479 (2021)

    Article  MathSciNet  Google Scholar 

  20. Raj, P.V.R., Santhosh, B.: Parametric study and optimization of linear and nonlinear vibration absorbers combined with piezoelectric energy harvester. Int. J. Mech. Sci. 152, 268–279 (2019)

    Article  Google Scholar 

  21. Kecik, K., Mitura, A.: Energy recovery from a pendulum tuned mass damper with two independent harvesting sources. Int. J. Mech. Sci. 174, 105568 (2020)

    Article  Google Scholar 

  22. Lu, Z.-Q., et al.: Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Appl. Math. Model. 89, 249–267 (2021)

    Article  MathSciNet  Google Scholar 

  23. Nili Ahmadabadi, Z., Khadem, S.E.: Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J. Sound Vib. 333(19), 4444–4457 (2014)

    Article  Google Scholar 

  24. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: transient responses. J. Sound Vib. 333(20), 4859–4880 (2014)

    Article  Google Scholar 

  25. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: harmonically forced responses. J. Sound Vib. 410, 287–302 (2017)

    Article  Google Scholar 

  26. Xiong, L., et al. On the use of piezoelectric nonlinear energy sink for vibration isolation and energy harvesting. In: ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (2018)

  27. Yao, H., et al.: A tri-stable nonlinear energy sink with piecewise stiffness. J. Sound Vib. 463, 114971 (2019)

    Article  Google Scholar 

  28. Xia, Y., Ruzzene, M., Erturk, A.: Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Appl. Phys. Lett. 114(9), 093501 (2019)

    Article  Google Scholar 

  29. Yao, H., et al.: Multi-stable nonlinear energy sink for rotor system. Int. J. Non-Linear Mech. 118, 103273 (2020)

    Article  Google Scholar 

  30. Yao, H., et al.: Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech. Syst. Signal Process. 138, 106546 (2020)

    Article  Google Scholar 

  31. Zeng, Y.-C., Ding, H.: A tristable nonlinear energy sink. Int. J. Mech. Sci. 238, 107839 (2023)

    Article  Google Scholar 

  32. Pennisi, G., et al.: Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018)

    Article  Google Scholar 

  33. Zhou, J., et al.: Suppression of panel flutter response in supersonic airflow using a nonlinear vibration absorber. Int. J. Non-Linear Mech. 133, 103714 (2021)

    Article  Google Scholar 

  34. Chen, L., et al.: Variable-potential bistable nonlinear energy sink for enhanced vibration suppression and energy harvesting. Int. J. Mech. Sci. 242, 107997 (2023)

    Article  Google Scholar 

  35. Rezaei, M., Talebitooti, R., Liao, W.-H.: Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation. Int. J. Mech. Sci. 207, 106618 (2021)

    Article  Google Scholar 

  36. Rezaei, M., Talebitooti, R., Liao, W.-H.: Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: numerical and analytical approaches. Energy 239, 122376 (2022)

    Article  Google Scholar 

  37. Fang, S., et al.: Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting. Int. J. Mech. Sci. 212, 106838 (2021)

    Article  Google Scholar 

  38. Rezaei, M., Talebitooti, R.: Investigating the performance of tri-stable magneto-piezoelastic absorber in simultaneous energy harvesting and vibration isolation. Appl. Math. Model. 102, 661–693 (2022)

    Article  Google Scholar 

  39. Nayfeh, A.H., Pai, P.F.: Linear and nonlinear structural mechanics. Wiley, Hoboken (2008)

    Google Scholar 

  40. Wang, G., et al.: Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dyn. 97(4), 2371–2397 (2019)

    Article  Google Scholar 

  41. Wang, G., et al.: A modified magnetic force model and experimental validation of a tri-stable piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 31(7), 967–979 (2020)

    Article  Google Scholar 

  42. Bibo, A., Abdelkefi, A., Daqaq, M.F.: Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations. J. Vib. Acoust. 137(3), 031017 (2015)

    Article  Google Scholar 

  43. Rezaei, M., Khadem, S.E., Firoozy, P.: Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects. Int. J. Eng. Sci. 118, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  44. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)

    Article  Google Scholar 

  45. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18(2), 025009 (2009)

    Article  Google Scholar 

  46. Erturk, A., Inman, D.J.: Piezoelectric energy harvesting. Wiley, Hoboken (2011)

    Book  Google Scholar 

  47. Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2011)

    Article  Google Scholar 

  48. Marin, M., Vlase, S., Paun, M.: Considerations on double porosity structure for micropolar bodies. AIP Adv. 5(3), 037113 (2015)

    Article  Google Scholar 

  49. Wang, G., et al.: Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects. Mech. Syst. Signal Process. 138, 106571 (2020)

    Article  Google Scholar 

  50. Abo-Elkhair, R.E., Bhatti, M.M., Mekheimer, K.S.: Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (AuCu nanoparticles) with moderate Reynolds number: an expanding horizon. Int. Commun. Heat Mass Transf 123, 105228 (2021)

    Article  Google Scholar 

  51. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22(1), 015014 (2012)

    Article  Google Scholar 

  52. Ebrahimi-Mamaghani, A., Sarparast, H., Rezaei, M.: On the vibrations of axially graded Rayleigh beams under a moving load. Appl. Math. Model. 84, 554–570 (2020)

    Article  MathSciNet  Google Scholar 

  53. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics: analytical, computational, and experimental methods. Wiley, Hoboken (2008)

    Google Scholar 

  54. Mamaghani, A.E., et al.: Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment. Int. J. Mech. Sci. 138, 427–447 (2018)

    Article  Google Scholar 

  55. Qiu, D., et al.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92(2), 443–461 (2018)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Research Grants Council (Project No. CUHK14211823), Hong Kong Special Administrative Region, China, and The Chinese University of Hong Kong (Project ID: 4055178).

Author information

Authors and Affiliations

Authors

Contributions

Masoud Rezaei: Conceptualization, Methodology, Software, Investigation, Formal analysis, Validation, Writing – original draft, Writing – review and editing. Roohollah Talebitooti: Supervision, Investigation, Writing – review & editing. Wei-Hsin Liao: Supervision, Investigation, Funding acquisition, Writing – review & editing. Michael I Friswell: Methodology, Investigation, Writing – review & editing.

Corresponding authors

Correspondence to Roohollah Talebitooti or Wei-Hsin Liao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A1

The mass per unit lengths of the main beam and MDVA are:

$${m}_{m}={\rho }_{m}{W}_{m}{t}_{m}$$
(30)
$${m}_{a}={\rho }_{s}{W}_{s}{t}_{s}+2({\rho }_{p}{W}_{p}{t}_{p})$$
(31)

where \(\rho \), W, and t denote the density, width, and thickness, respectively.

Bending stiffnesses of the main beam and absorber are:

$${Y}_{m}{I}_{m}={Y}_{m}\left(\frac{{W}_{m}{t}_{m}^{3}}{12}\right)$$
(32)
$${Y}_{a}{I}_{a}={Y}_{s}\left(\frac{{W}_{s}{t}_{s}^{3}}{12} \right)+ {Y}_{p}\left(\frac{2}{3}{W}_{p}\left\{{\left(\frac{{t}_{s}}{2}+{t}_{p}\right)}^{2}-{\left(\frac{{t}_{s}}{2}\right)}^{2}\right\}\right)$$
(33)

Electromechanical coupling and piezoelectric layer capacitance are:

$$\theta =-\frac{{Y}_{p}{d}_{31}}{2{t}_{p}}{W}_{p}\left\{{\left(\frac{{t}_{s}}{2}+{t}_{p}\right)}^{2}-{\left(\frac{{t}_{s}}{2}\right)}^{2}\right\}\left[H\left(s\right)-H\left(s-{L}_{p}\right)\right]$$
(34)
$${C}_{p}=\frac{{e}_{33}{W}_{p}{L}_{p}}{{t}_{p}}$$
(35)

where \(H\left(s\right)\) is the Heaviside function and \({L}_{p}\), \({d}_{31}\), and \({e}_{33}\) are the PZT layers’ length, strain constant, and permittivity, respectively.

The boundary conditions of the main and absorber beams are:

$$S=0: \left\{\begin{array}{c}{w}_{m}=0\\ {w}_{m}^{{\prime}{\prime}}=0\end{array}\quad,\quad\right.S={L}_{m}: \left\{\begin{array}{c}{w}_{m}=0\\ {w}_{m}^{{\prime}{\prime}}=0\end{array}\right.$$
(36)
$$s=0: \left\{\begin{array}{c}{w}_{a}=0\\ {w}_{a}^{\prime}=0\end{array}\quad,\quad\right.s={L}_{a}: \left\{\begin{array}{c}{Y}_{a}{I}_{a}{w}_{a}^{{\prime}{\prime}}=-\frac{{M}_{t}D}{2}{\ddot{w}}_{m}-({I}_{t}+\frac{{M}_{t}{D}^{2}}{4}) {\ddot{w}^{\prime}}_{m} \\ {{Y}_{a}{I}_{a}w}_{a}^{{\prime}{\prime}{\prime}}={M}_{t}{\ddot{w}}_{a}\end{array}\right.$$
(37)

Appendix A2

The I-th mode shapes and natural frequencies of the simply-supported beam are:

$${\psi }_{I}\left(S\right)=\sqrt{\frac{2}{{m}_{m}{L}_{m}}} \text{sin} \left(\frac{I\pi }{{L}_{m}}S\right)$$
(38)
$${\overline{\omega }}_{I}=(I\pi )\sqrt{\frac{{Y}_{m}{I}_{m}}{{m}_{m}{L}_{m}^{4}}}$$

The i-th mode shapes and natural frequencies of the absorber beam are:

$${\phi }_{i}\left(s\right)={C}_{i}(\text{cos}\frac{{\lambda }_{i}}{{L}_{a}}s-\text{cosh}\frac{{\lambda }_{i}}{{L}_{a}}s+{\mathcal{H}}_{i}\left(\text{sin}\frac{{\lambda }_{i}}{{L}_{a}}s-\text{sinh}\frac{{\lambda }_{i}}{{L}_{a}}s\right))$$
(39)
$${\omega }_{i}={\lambda }_{i}^{2}\sqrt{\frac{{Y}_{a}{I}_{a}}{{m}_{a}{L}_{a}^{4}}}$$

where \({C}_{i}\), \({\lambda }_{i}\), and \({\mathcal{H}}_{i}\) are the i-th modal amplitude, eigenvalue, and modal constant, and they are respectively calculated by:

$${\int }_{0}^{{L}_{b}}{\phi }_{i}\left(s\right){(m}_{a}){\phi }_{j}\left(s\right)ds+{[{\phi }_{i}\left(s\right){M}_{t}{\phi }_{j}\left(s\right)+{\left[{\phi }_{i}\left(s\right){M}_{t}\frac{D}{2}{\phi }_{j}\left(s\right)\right]}^{\prime}+{\phi }_{i}^{{\prime}}\left(s\right)({{I}_{t}+M}_{t}{\frac{{D}^{2}}{4}){\phi }_{j}^{{\prime}}}\left(s\right)]}_{{L}_{a}}={\delta }_{ij}$$
$$\frac{{M}_{t}{I}_{t}}{{m}_{a}^{2}{{L}_{a}}^{4}}\left(1-\text{cos}{\lambda }_{i}\text{cosh}{\lambda }_{i}\right){{\lambda }_{i}}^{4}-\left(\frac{{M}_{t}{D}^{2}/4}{{m}_{a}{{L}_{a}}^{3}}+\frac{{I}_{t}}{{m}_{a}{{L}_{a}}^{3}}\right)\left(\text{sin}{\lambda }_{i}\text{cosh}{\lambda }_{i}+\text{sinh}{\lambda }_{i}\text{cos}{\lambda }_{i}\right){{\lambda }_{i}}^{3}-2\frac{{M}_{t}D/2}{{m}_{a}{{L}_{a}}^{2}}\left(\text{sin}{\lambda }_{i}\text{sinh}{\lambda }_{i}\right){{\lambda }_{i}}^{2}+\frac{{M}_{t}}{{m}_{a}{L}_{a}}\left(\text{sinh}{\lambda }_{i}\text{cos}{\lambda }_{i}-\text{cosh}{\lambda }_{i}\text{sin}{\lambda }_{i}\right){\lambda }_{i}+\left(1+\text{cos}{\lambda }_{i}\text{cosh}{\lambda }_{i}\right)-\left(\frac{{M}_{t}{D}^{2}/4}{{m}_{a}{{L}_{a}}^{3}}+\frac{{I}_{t}}{{m}_{a}{{L}_{a}}^{3}}\right){{\lambda }_{i}}^{3}\left(1-\text{cos}{\lambda }_{i}\text{cosh}{\lambda }_{i}\right)=0$$
(40)
$${\mathcal{H}}_{i}=\frac{\left(\text{sin}{\lambda }_{i}-\text{sinh}{\lambda }_{i}\right)+\frac{{M}_{t}}{{m}_{a}{L}_{a}}{\lambda }_{i}[\left(\text{cos}{\lambda }_{i}-\text{cosh}{\lambda }_{i}\right)-\frac{D}{2}{\lambda }_{i}\left(\text{sin}{\lambda }_{i}+\text{sinh}{\lambda }_{i}\right)]}{\left(\text{cos}{\lambda }_{i}+\text{cosh}{\lambda }_{i}\right)-\frac{{M}_{t}}{{m}_{a}{L}_{a}}{\lambda }_{i}[\left(\text{sin}{\lambda }_{i}-\text{sinh}{\lambda }_{i}\right)-\frac{D}{2}{\lambda }_{i}\left(\text{cos}{\lambda }_{i}-\text{cosh}{\lambda }_{i}\right)]}$$

Appendix A3

The coefficients of the ODEs defined in Eq. (13) are defined as:

$$A{M}_{I}={\psi }_{N}\left({S}_{0}\right) ({m}_{a}{L}_{a}+{M}_{t}){\psi }_{I}\left({S}_{0}\right)$$
$$B{M}_{i}={\psi }_{N}\left({S}_{0}\right)({m}_{a}{\int }_{0}^{{L}_{a}}{\phi }_{i}\left(s\right)ds+{M}_{t}{\phi }_{i}\left({L}_{a}\right))$$
$$C{M}_{N}=2{\overline{\zeta }}_{N}{\overline{\omega }}_{N}$$
$$D{M}_{N}={\overline{\omega }}_{N}^{2}$$
$$E{M}_{NI}=2{\psi }_{N}\left({S}_{0}\right) ({M}_{t}){\psi }_{I}\left({S}_{0}\right)$$
$$F{M}_{N}={\psi }_{N}\left({S}_{0}\right)$$
$$G{M}_{I}={\psi }_{I}\left({S}_{0}\right)({m}_{a}{\int }_{0}^{{L}_{a}}{\phi }_{n}\left(s\right)ds+{M}_{t}{\phi }_{n}\left({L}_{a}\right))$$
$$H{M}_{n}=2{\zeta }_{n}{\omega }_{n}$$
$$I{M}_{n}={\omega }_{n}^{2}$$
$$J{M}_{nijk}={\int }_{0}^{{L}_{a}}{Y}_{a}{I}_{a}{\phi }_{n}{\left({{\phi }^{{\prime}}}_{i}{\left({{\phi }^{{\prime}}}_{j}{{\phi }^{{\prime}{\prime}}}_{k}\right)}^{{\prime}}\right)}^{{\prime}}ds$$
$$K{M}_{n}=\frac{{Y}_{p}{d}_{31}}{2{t}_{p}}{W}_{p}\left({\left(\frac{{t}_{s}}{2}+{t}_{p}\right)}^{2}-{\left(\frac{{t}_{s}}{2}\right)}^{2}\right) { \phi ^{\prime}}_{n}\left({L}_{p}\right)$$
$$L{M}_{nij}=\frac{{Y}_{p}{d}_{31}}{2{t}_{p}}{W}_{p}\left({\left(\frac{{t}_{s}}{2}+{t}_{p}\right)}^{2}-{\left(\frac{{t}_{s}}{2}\right)}^{2}\right) {\left(\frac{1}{2}{\left({\phi }_{n}{\phi }_{i}^{{\prime}}{\phi }_{j}^{{\prime}}\right)}^{\prime}-{\phi }_{n}{\phi }_{i}^{{\prime}}{\phi }_{j}^{{\prime}{\prime}}\right)}_{s={L}_{a}}$$
$$M{M}_{nijk}={\int }_{0}^{{L}_{a}}{\phi }_{n}({\phi }_{i}^{{\prime}}{\int }_{{L}_{a}}^{s}{m}_{a}{\int }_{0}^{s}({\phi }_{j}^{{\prime}}{\phi }_{k}^{{\prime}})dsds)^{\prime}ds$$
$$N{M}_{i}=\frac{{Y}_{p}{d}_{31}}{2{t}_{p}}{W}_{p}\left({\left(\frac{{t}_{s}}{2}+{t}_{p}\right)}^{2}-{\left(\frac{{t}_{s}}{2}\right)}^{2}\right) {\phi }_{i}^{{\prime}}\left({L}_{p}\right)$$
$$O{M}_{ijk}=\frac{{Y}_{p}{d}_{31}}{2{t}_{p}}{W}_{p}\left({\left(\frac{{t}_{s}}{2}+{t}_{p}\right)}^{2}-{\left(\frac{{t}_{s}}{2}\right)}^{2}\right) {\int }_{0}^{{L}_{a}}{\phi }_{i}^{{\prime}}{\phi }_{j}^{{\prime}}{\phi }_{k}^{{\prime}{\prime}}ds$$
$$MF{C}_{n}={\phi }_{n}\left({L}_{a}\right)$$
(41)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Talebitooti, R., Liao, WH. et al. A comparative study on vibration suppression and energy harvesting via mono-, bi-, and tri-stable piezoelectric nonlinear energy sinks. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09562-3

Keywords

Navigation