Skip to main content
Log in

Nonlinear vibrations of bolted flange joint plate system considering the stick–slip–separation state: theory and experiment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The contact states including stick, slip, and separation can occur at the bolted joint interface of bolted flange joint structures, which significantly affects and complicates the vibration characteristics of connected structures. However, the mechanism of the influence of these three contact states on structural vibration is still not well understood. This paper establishes a universal theoretical model of bolted flange joint plate systems considering the stick, slip, and separation states simultaneously, which can be extended to a structure with an arbitrary number of bolts and plates. The bi-linear hysteretic model is adopted to model the three contact states. The contact pressure between the bolts and flanges is considered as two-dimensional distribution form, which is closer to real contact situation. Based on the Kirchhoff plate theory, the energy functions of plate and flange are obtained. Further, the nonlinear dynamic equation is derived using Lagrange equations, and solved by the Newmark-beta method. The experimental studies are performed on a plate system connected with bolted flange joint to illustrate the effectiveness of the theoretical model. The results highlight the influence of separation state and friction coefficient on the vibration response. It is found that as the tightening torque decreases, the resonance amplitude increases due to the occurrence of interface separation. The slip state can cause the nonlinear softening property, but this property will weaken when the separation occurs at bolted joint interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Li, H., Lv, H., Sun, H., et al.: Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt loosening boundary conditions. J. Sound Vib. 496, 115935 (2021)

    Article  Google Scholar 

  2. Liu, X., Sun, W., Liu, H., et al.: Semi-analytical modeling and analysis of nonlinear vibration of bolted thin plate based on virtual material method. Nonlinear Dyn. 108(2), 1247–1268 (2022)

    Article  Google Scholar 

  3. Lin, H., Zhu, Y., Yang, J., Wen, Z.: Anchor stress and deformation of the bolted joint under shearing. Adv. Civ. Eng. 2020, 3696489 (2020)

    Google Scholar 

  4. Hong, J., Yang, Z., Wang, Y., Cheng, R., Ma, Y.: Combination resonances of rotor systems with asymmetric residual preloads in bolted joints. Mech. Syst. Signal Process. 183, 109626 (2023)

    Article  Google Scholar 

  5. Yang, T., Ma, H., Qin, Z., Guan, H., Xiong, Q.: Coupling vibration characteristics of the shaft-disk-drum rotor system with bolted joints. Mech. Syst. Signal Process. 169, 108747 (2022)

    Article  Google Scholar 

  6. Krishna, M.M., Shunmugam, M., Prasad, N.S.: A study on the sealing performance of bolted flange joints with gaskets using finite element analysis. Int. J. Press. Vessels Pip. 84, 349–357 (2007)

    Article  Google Scholar 

  7. Schwingshackl, C.W., Di Maio, D., Sever, I., et al.: Modeling and validation of the nonlinear dynamic behavior of bolted flange joints. J. Eng. Gas Turbines Power 135(12), 122504 (2013)

    Article  Google Scholar 

  8. Jalali, H., Jamia, N., Friswell, M.I., Khodaparast, H.H., Taghipour, J.: A generalization of the Valanis model for friction modelling. Mech. Syst. Signal Process. 179, 109339 (2022)

    Article  Google Scholar 

  9. Jamia, N., Jalali, H., Taghipour, J., Friswell, M., Khodaparast, H.H.: An equivalent model of a nonlinear bolted flange joint. Mech. Syst. Signal Process. 153, 107507 (2021)

    Article  Google Scholar 

  10. Mir-Haidari, S.-E., Behdinan, K.: Nonlinear effects of bolted flange connections in aeroengine casing assemblies. Mech. Syst. Signal Process. 166, 108433 (2022)

    Article  Google Scholar 

  11. Beaudoin, M.-A., Behdinan, K.: Analytical lump model for the nonlinear dynamic response of bolted flanges in aero-engine casings. Mech. Syst. Signal Process. 115, 14–28 (2019)

    Article  Google Scholar 

  12. Jaszak, P.: The elastic serrated gasket of the flange bolted joints. Int. J. Press. Vessels Pip. 176, 103954 (2019)

    Article  Google Scholar 

  13. Li, T., Yang, D., Zhao, B., et al.: Measured and investigated nonlinear dynamics parameters on bolted flange joints of combined rotor. J. Mech. Sci. Technol. 35, 1841–1850 (2021)

    Article  Google Scholar 

  14. Mir-Haidari, S.E., Behdinan, K.: Advanced test protocols for rapid detection and quantification of nonlinear dynamic responses in aeroengine casing assemblies. Nonlinear Dyn. 104, 2219–2239 (2021)

    Article  Google Scholar 

  15. Zhai, Y.-J., Ma, Z.-S., Chang, H.-Z., Ding, Q.: Model order reduction and dynamic characteristic analysis of the bolted flange structure with free-free boundaries. Structures 34, 149–157 (2021)

    Article  Google Scholar 

  16. Grzejda, R.: Finite element modeling of the contact of elements preloaded with a bolt and externally loaded with any force. J. Comput. Appl. Math. 393, 113534 (2021)

    Article  MathSciNet  Google Scholar 

  17. Luo, Z., Zhao, Y.: Efficient thermal finite element modeling of selective laser melting of Inconel 718. Comput. Mech. 65(3), 763–787 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ślęczka, L., Leń, D.: Prying action in bolted circular flange joints: approach based on component method. Eng. Struct. 228, 111528 (2021)

    Article  Google Scholar 

  19. Yin, T., Wang, X.Y., Zhu, H.P.: A probabilistic approach for the detection of bolt loosening in periodically supported structures endowed with bolted flange joints. Mech. Syst. Signal Process. 128, 588–616 (2019)

    Article  Google Scholar 

  20. Luan, Y., Guan, Z.-Q., Cheng, G.-D., Liu, S.: A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints. J. Sound Vib. 331, 325–344 (2012)

    Article  Google Scholar 

  21. Lu, X., Zeng, Y., Chen, Y., et al.: Transient response characteristics of a bolted flange connection structure with shear pin/cone. J. Sound Vib. 395, 240–257 (2017)

    Article  Google Scholar 

  22. Li, G., Nie, Z., Zeng, Y., et al.: New simplified dynamic modeling method of bolted flange joints of launch vehicle. J. Vib. Acoust. 142(2), 021011 (2020)

    Article  Google Scholar 

  23. Klepka, A., Dziedziech, K., Spytek, J., et al.: Experimental investigation of hysteretic stiffness related effects in contact-type nonlinearity. Nonlinear Dyn. 95, 1513–1528 (2019)

    Article  Google Scholar 

  24. Górski, J., Klepka, A., Dziedziech, K., et al.: Identification of the stick and slip motion between contact surfaces using artificial neural networks. Nonlinear Dyn. 100, 225–242 (2020)

    Article  Google Scholar 

  25. Pan, J., Guan, Z., Sun, W., et al.: Nonlinear oscillations of a dual-joint system involving simultaneous 1: 1 and 1: 2 internal resonances. J. Sound Vib. 527, 116807 (2022)

    Article  Google Scholar 

  26. Pan, J.C., Guan, Z.Q., Zeng, Y., et al.: Modal interactions of a dual-joint cylindrical shell system via nonlinear normal modes. Int. J. Mech. Sci. 234, 107659 (2022)

    Article  Google Scholar 

  27. Yu, P., Li, L., Chen, G., Yang, M.: Dynamic modelling and vibration characteristics analysis for the bolted joint with spigot in the rotor system. Appl. Math. Model. 94, 306–331 (2021)

    Article  Google Scholar 

  28. Meisami, F., Moavenian, M., Afsharfard, A.: Nonlinear behavior of single bolted flange joints: a novel analytical model. Eng. Struct. 173, 908–917 (2018)

    Article  Google Scholar 

  29. Tran, T.T., Lee, D.: Understanding the behavior of l-type flange joint in wind turbine towers: proposed mechanisms. Eng. Fail. Anal. 142, 106750 (2022)

    Article  Google Scholar 

  30. Li, C., Miao, X., Qiao, R., Tang, Q.: Modeling method of bolted joints with micro-slip features and its application in flanged cylindrical shell. Thin-Walled Structures 164, 107854 (2021)

    Article  Google Scholar 

  31. Xing, W.C., Wang, Y.Q.: Modeling and vibration analysis of bolted joint multi-plate structures with general boundary conditions. Eng. Struct. 281, 115813 (2023)

    Article  Google Scholar 

  32. Du, J., Li, W.L., Liu, Z., Yang, T., Jin, G.: Free vibration of two elastically coupled rectangular plates with uniform elastic boundary restraints. J. Sound Vib. 330, 788–804 (2011)

    Article  Google Scholar 

  33. Adel, F., Shokrollahi, S., Jamal-Omidi, M., Ahmadian, H.: A model updating method for hybrid composite/aluminum bolted joints using modal test data. J. Sound Vib. 396, 172–185 (2017)

    Article  Google Scholar 

  34. Li, D., Botto, D., Li, R., Xu, C., Zhang, W.: Experimental and theoretical studies on friction contact of bolted joint interfaces. Int. J. Mech. Sci. 236, 107773 (2022)

    Article  Google Scholar 

  35. Li, D., Xu, C., Kang, J., Zhang, Z.: Modeling tangential friction based on contact pressure distribution for predicting dynamic responses of bolted joint structures. Nonlinear Dyn. 101, 255–269 (2020)

    Article  Google Scholar 

  36. Kim, J., Yoon, J.-C., Kang, B.-S.: Finite element analysis and modeling of structure with bolted joints. Appl. Math. Model. 31, 895–911 (2007)

    Article  Google Scholar 

  37. Marshall, M., Lewis, R., Dwyer-Joyce, R.: Characterisation of contact pressure distribution in bolted joints. Strain 42, 31–43 (2006)

    Article  Google Scholar 

  38. Mantelli, M.B., Milanez, F.H., Pereira, E.N., Fletcher, L.S.: Statistical model for pressure distribution of bolted joints. J. Thermophys. Heat Transfer 24, 432–437 (2010)

    Article  Google Scholar 

  39. Li, C., Qiao, R., Tang, Q., et al.: Investigation on the vibration and interface state of a thin-walled cylindrical shell with bolted joints considering its bilinear stiffness. Appl. Acoust. 172, 107580 (2021)

    Article  Google Scholar 

  40. Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. 125(1), 169–181 (1997)

    Article  Google Scholar 

  41. Song, Y., Hartwigsen, C.J., McFarland, D.M., et al.: Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J. Sound Vib. 273(1), 249–276 (2004)

    Article  Google Scholar 

  42. Li, H., Xue, P., Guan, Z., Han, Q., Wen, B.: A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property. Nonlinear Dyn. 94, 2219–2241 (2018)

    Article  Google Scholar 

  43. He, G., Yang, X.: Dynamic analysis of two-layer composite beams with partial interaction using a higher order beam theory. Int. J. Mech. Sci. 90, 102–112 (2015)

    Article  Google Scholar 

  44. Cui, Y., Wang, Y.: Effect of disk flexibility on nonlinear vibration characteristics of shaft-disk rotors. Acta Mech. Sin. 40, 523140 (2024)

    Article  MathSciNet  Google Scholar 

  45. Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for fretting behavior of nominally flat rough surfaces. Int. J. Solids Struct. 48(10), 1436–1450 (2011)

    Article  Google Scholar 

  46. Segalman, D.J.: A four-parameter Iwan model for lap-type joints. Trans ASME J. Appl. Mech. 72, 752–760 (2005)

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 12272088 and 11922205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

For an isotropic plate, the relationships between stress and strain for i-th plate are expressed as

$$ \left\{ {\begin{array}{*{20}l} {\sigma_{xi} = \frac{E}{{1 - \nu^{2} }}\left( {\varepsilon_{xi} + \nu \varepsilon_{yi} } \right)} \hfill & {} \hfill \\ {\sigma_{yi} = \frac{E}{{1 - \nu^{2} }}\left( {\nu \varepsilon_{xi} + \varepsilon_{yi} } \right){,}} \hfill & {(i = 1,2, \ldots ,n)} \hfill \\ {\tau_{xyi} = G\gamma_{xyi} = \frac{{E\gamma_{xyi} }}{{2\left( {1 + \nu } \right)}}} \hfill & {} \hfill \\ \end{array} } \right. $$
(35)

where E is the Young’s modulus, G is the shear modulus, and v is the Poisson’s ratio of the plate.

The kinetic energy of n plates can be expressed as

$$ T_{plate} = \frac{1}{2}\rho h\sum\limits_{i = 1}^{n} {\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {\left[ {\left( {\frac{{\partial u_{0,i}^{p} }}{\partial t}} \right)^{2} + \left( {\frac{{\partial v_{0,i}^{p} }}{\partial t}} \right)^{2} + \left( {\frac{{\partial w_{0,i}^{p} }}{\partial t}} \right)^{2} } \right]{\text{d}}x_{i} {\text{d}}y_{i} } } } $$
(36)

The kinetic energy of bolts can be written as

$$ T_{bolts} = \frac{1}{2}m_{b} \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{{N_{B} }} {\left[ {\frac{{\partial w_{0,i}^{p} \left( {x_{bj} ,y_{bj} } \right)}}{\partial t}} \right]^{2} } } $$
(37)

The kinetic energy of bolts can be written as

$$ T_{sensor} = \frac{1}{2}m_{c} \left[ {\frac{{\partial w_{0,n}^{p} \left( {x_{c} ,y_{c} } \right)}}{\partial t}} \right]^{2} $$
(38)

where ρ, mb, and mc represent the density of the plate, bolt’s mass, and acceleration sensor’s mass, respectively. In this study, it is assumed that the accelerometer is placed on the rightmost rectangular plate, which position coordinate is (xc, yc). The position coordinate of j-th bolt is represented as (xbj, ybj).

The potential energy of n plates can be expressed as

$$ \begin{aligned} U_{plate} & = \frac{1}{2}\sum\limits_{i = 1}^{n} {\int_{{ - \frac{{h_{i} }}{2}}}^{{\frac{{h_{i} }}{2}}} {\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {\left( {\sigma_{xi} \varepsilon_{xi} + \sigma_{yi} \varepsilon_{yi} + \tau_{xyi} \gamma_{xyi} } \right){\text{d}}x_{i} {\text{d}}y_{i} {\text{d}}z_{i} } } } } \\ & \; = \sum\limits_{i = 1}^{n} {\left\{ {\frac{{D_{f} }}{2}\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {\left[ {\left( {\frac{{\partial^{2} w_{0,i} }}{{\partial x_{i}^{2} }}} \right)^{2} + 2v\left( {\frac{{\partial^{2} w_{0,i} }}{{\partial x_{i}^{2} }}} \right)\left( {\frac{{\partial^{2} w_{0,i} }}{{\partial y_{i}^{2} }}} \right) + \left. {\left( {\frac{{\partial^{2} w_{0,i} }}{{\partial y_{i}^{2} }}} \right)^{2} + 2\left( {1 - v} \right)\left( {\frac{{\partial^{2} w_{0,i} }}{{\partial x_{i} \partial y_{i} }}} \right)^{2} } \right]{\text{d}}x_{i} {\text{d}}y_{i} } \right.} } } \right.} \\ & \;\left. { + \frac{{D_{e} }}{2}\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {\left[ {\left( {\frac{{\partial u_{0,i} }}{{\partial x_{i} }}} \right)^{2} + \left( {\frac{{\partial v_{0,i} }}{{\partial y_{i} }}} \right)^{2} + 2v\frac{{\partial u_{0,i} }}{{\partial x_{i} }}\frac{{\partial v_{0,i} }}{{\partial y_{i} }} + \frac{1 - v}{2}\left( {\frac{{\partial u_{0,i} }}{{\partial y_{i} }} + \frac{{\partial v_{0,i} }}{{\partial x_{i} }}} \right)^{2} } \right]} } {\text{d}}x_{i} {\text{d}}y_{i} } \right\} \\ \end{aligned} $$
(39)

where Df and De denote the flexural rigidity and extensional rigidity of the plate, respectively, and their expressions can be written as

$$ D_{f} = \frac{{Eh^{3} }}{{12\left( {1 - v^{2} } \right)}}{, }D_{e} = \frac{Eh}{{1 - v^{2} }} $$
(40)

The potential energy of the 2n-2 flanges can be written as

$$ \begin{aligned} U_{flange} & = \frac{1}{2}\sum\limits_{i = 1}^{2n - 2} {\int_{{ - \frac{{f_{{\text{k}}} }}{2}}}^{{\frac{{f_{{\text{k}}} }}{2}}} {\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {\left( {\sigma_{xi} \varepsilon_{xi} + \sigma_{yi} \varepsilon_{yi} + \tau_{xyi} \gamma_{xyi} } \right){\text{d}}x_{f,i} {\text{d}}y_{f,i} {\text{d}}z_{f,i} } } } } \\ & \quad = \sum\limits_{i = 1}^{2n - 2} {\left\{ {\frac{{D_{f}^{flange} }}{2}\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{g} }}{2}}}^{{\frac{{f_{g} }}{2}}} {\left[ {\left( {\frac{{\partial^{2} w_{0,i}^{f} }}{{\partial x_{f,i}^{2} }}} \right)^{2} + 2v\left( {\frac{{\partial^{2} w_{0,i}^{f} }}{{\partial x_{f,i}^{2} }}} \right)\left( {\frac{{\partial^{2} w_{0,i}^{f} }}{{\partial y_{f,i}^{2} }}} \right)} \right.} } } \right.} \\ & \quad + \left. {\left( {\frac{{\partial^{2} w_{0,i}^{f} }}{{\partial y_{f,i}^{2} }}} \right)^{2} + 2\left( {1 - v} \right)\left( {\frac{{\partial^{2} w_{0,i}^{f} }}{{\partial x_{f,i} \partial y_{f,i} }}} \right)^{2} } \right]{\text{d}}x_{f,i} {\text{d}}y_{f,i} \\ & \quad \left. { + \frac{{D_{e}^{flange} }}{2}\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{g} }}{2}}}^{{\frac{{f_{g} }}{2}}} {\left[ {\left( {\frac{{\partial u_{0,i}^{f} }}{{\partial x_{f,i} }}} \right)^{2} + \left( {\frac{{\partial v_{0,i}^{f} }}{{\partial y_{f,i} }}} \right)^{2} + 2v\frac{{\partial u_{0,i}^{f} }}{{\partial x_{f,i} }}\frac{{\partial v_{0,i}^{f} }}{{\partial y_{f,i} }} + \frac{1 - v}{2}\left( {\frac{{\partial u_{0,i}^{f} }}{{\partial y_{f,i} }} + \frac{{\partial v_{0,i}^{f} }}{{\partial x_{f,i} }}} \right)^{2} } \right]} } {\text{d}}x_{f,i} {\text{d}}y_{f,i} } \right\} \\ \end{aligned} $$
(41)

where \({\text{D}}_{\text{f}}^{\text{flange}}\) and \({\text{D}}_{\text{e}}^{\text{flange}}\) represent the flexural rigidity and extensional rigidity of the flange, respectively, and their expressions can be expressed as

$$ D_{f}^{flange} = \frac{{Ef_{{\text{k}}}^{3} }}{{12\left( {1 - v^{2} } \right)}}{, }D_{e}^{flange} = \frac{{Ef_{{\text{k}}} }}{{1 - v^{2} }} $$
(42)

The expressions of the \({\text{U}}_{\text{coupling}}^{1}\), \({\text{U}}_{\text{coupling}}^{\text{middle}}\), and \({\text{U}}_{{\text{couplin}}{\text{g}}}^{\text{n}}\) are, respectively, written as

$$ \begin{aligned} U_{coupling}^{1} & = \frac{1}{2}\int_{{ - \frac{{b_{1} }}{2}}}^{{\frac{{b_{1} }}{2}}} {\left[ {k_{x}^{f} \left( {\left. {u_{0,1} } \right|_{{x_{1} = \frac{{L_{1} }}{2}}} + \left. {w_{0,1}^{f} } \right|_{{x_{f1} = - \frac{{f_{g} }}{2}}} } \right)^{2} + k_{y}^{f} \left( {\left. {v_{0,1} } \right|_{{x_{1} = \frac{{L_{1} }}{2}}} - \left. {v_{0,1}^{f} } \right|_{{x_{f1} = - \frac{{f_{g} }}{2}}} } \right)^{2} } \right]} \\ & \quad \left. { + k_{z}^{f} \left( {\left. {w_{0,1} } \right|_{{x_{1} = \frac{{L_{1} }}{2}}} - \left. {u_{0,1}^{f} } \right|_{{x_{f1} = - \frac{{f_{g} }}{2}}} } \right)^{2} + k_{\theta }^{f} \left( {\frac{{\left. {\partial w_{0,1} } \right|_{{x_{1} = \frac{{L_{1} }}{2}}} }}{{\partial x_{1} }} - \frac{{\left. {\partial w_{0,1}^{f} } \right|_{{x_{f1} = - \frac{{f_{g} }}{2}}} }}{{\partial x_{f1} }}} \right)^{2} } \right]dy_{1} \\ \end{aligned} $$
(43)
$$ \begin{aligned} U_{coupling}^{middle} = & \frac{1}{2}\sum\limits_{i = 2}^{2n - 3} {\left\{ {\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\left[ {k_{x}^{f} \left( {\left. {u_{0,i} } \right|_{{x_{i} = - \frac{{L_{i} }}{2}}} + \left. {w_{0,2i - 2}^{f} } \right|_{{x_{f,2i - 2} = - \frac{{f_{g} }}{2}}} } \right)^{2} + k_{y}^{f} \left( {\left. {v_{0,i} } \right|_{{x_{i} = - \frac{{L_{i} }}{2}}} - \left. {v_{0,2i - 2}^{f} } \right|_{{x_{f,2i - 2} = - \frac{{f_{g} }}{2}}} } \right)^{2} } \right]} } \right.} \\ & \;\left. { + k_{z}^{f} \left( {\left. {w_{0,i} } \right|_{{x_{i} = - \frac{{L_{i} }}{2}}} - \left. {u_{0,2i - 2}^{f} } \right|_{{x_{f,2i - 2} = - \frac{{f_{g} }}{2}}} } \right)^{2} + k_{\theta }^{f} \left( {\frac{{\left. {\partial w_{0,i} } \right|_{{x_{i} = - \frac{{L_{i} }}{2}}} }}{{\partial x_{i} }} - \frac{{\left. {\partial w_{0,2i - 2}^{f} } \right|_{{x_{f,2i - 2} = - \frac{{f_{g} }}{2}}} }}{{\partial x_{f,2i - 2} }}} \right)^{2} } \right] \\ & \; \times dy_{i} \int_{{ - \frac{{b_{n} }}{2}}}^{{\frac{{b_{n} }}{2}}} {\left[ {k_{x}^{f} \left( {\left. {u_{0,i} } \right|_{{x_{i} = \frac{{L_{i} }}{2}}} + \left. {w_{0,2i - 1}^{f} } \right|_{{x_{f,2i - 1} = - \frac{{f_{g} }}{2}}} } \right)^{2} + k_{y}^{f} \left( {\left. {v_{0,i} } \right|_{{x_{i} = \frac{{L_{i} }}{2}}} - \left. {v_{0,2i - 1}^{f} } \right|_{{x_{f,2i - 1} = - \frac{{f_{g} }}{2}}} } \right)^{2} } \right]} \\ & \;\left. { + k_{z}^{f} \left( {\left. {w_{0,i} } \right|_{{x_{i} = \frac{{L_{i} }}{2}}} - \left. {u_{0,2i - 1}^{f} } \right|_{{x_{f,2i - 1} = - \frac{{f_{g} }}{2}}} } \right)^{2} + k_{\theta }^{f} \left( {\frac{{\left. {\partial w_{0,i} } \right|_{{x_{i} = \frac{{L_{i} }}{2}}} }}{{\partial x_{i} }} - \frac{{\left. {\partial w_{0,2i - 1}^{f} } \right|_{{x_{f,2i - 1} = - \frac{{f_{g} }}{2}}} }}{{\partial x_{f,2i - 1} }}} \right)^{2} } \right]dy_{i} \\ \end{aligned} $$
(44)
$$ \begin{gathered} U_{{{\text{co}}upling}}^{n} { = }\frac{1}{2}\int_{{ - \frac{{b_{n} }}{2}}}^{{\frac{{b_{n} }}{2}}} {\left[ {k_{x}^{f} \left( {\left. {u_{0,n} } \right|_{{x_{n} = - \frac{{L_{n} }}{2}}} + \left. {w_{0,2n - 2}^{f} } \right|_{{x_{f,2n - 2} = - \frac{{f_{g} }}{2}}} } \right)^{2} + k_{y}^{f} \left( {\left. {v_{0,n} } \right|_{{x_{n} = - \frac{{L_{n} }}{2}}} - \left. {v_{0,2n - 2}^{f} } \right|_{{x_{f,2n - 2} = - \frac{{f_{g} }}{2}}} } \right)^{2} } \right]} \\ \left. { + k_{z}^{f} \left( {\left. {w_{0,n} } \right|_{{x_{n} = - \frac{{L_{n} }}{2}}} - \left. {u_{0,2n - 2}^{f} } \right|_{{x_{f,2n - 2} = - \frac{{f_{g} }}{2}}} } \right)^{2} + k_{\theta }^{f} \left( {\frac{{\left. {\partial w_{0,n} } \right|_{{x_{n} = - \frac{{L_{n} }}{2}}} }}{{\partial x_{n} }} - \frac{{\left. {\partial w_{0,2n - 2}^{f} } \right|_{{x_{f,2n - 2} = - \frac{{f_{g} }}{2}}} }}{{\partial x_{f,2n - 2} }}} \right)^{2} } \right]{\text{d}}y_{n} \\ \end{gathered} $$
(45)

The Lagrangian energy function L is written as

$$ L = T_{{{\text{total}}}} + W_{{{\text{total}}}} - U_{{{\text{total}}}} $$
(46)

where \({\text{T}}_{\text{total}}\) denotes the total kinetic energy of the whole structure, \({\text{U}}_{\text{total}}\) denotes the total potential energy of the whole structure, and \({\text{W}}_{\text{total}}\) denotes the work done by the bolts and base excitation. The expressions of the above three parts are, respectively, given by

$$ T_{{{\text{total}}}} = T_{b} + T_{{{\text{flange}}}} $$
(47)
$$ U_{{{\text{total}}}} = U_{plate} + U_{flange} + U_{coupling} + U_{f,bolt} + U_{b,bolt} $$
(48)
$$ W_{{{\text{total}}}} = W_{{{\text{total}}}}^{{{\text{bolt}}}} + W_{{{\text{base}}}} $$
(49)

Appendix 2

C is the damping matrix, which is given by

$$ {\mathbf{C}} = \alpha {\mathbf{M}} + \beta {\mathbf{K}} $$
(50)

where α and β are damping parameters, and they are written as

$$ \left\{ {\begin{array}{*{20}l} {\alpha = \frac{{2\omega_{1} \omega_{2} \left( {\omega_{2} \xi_{1} - \omega_{1} \xi_{2} } \right)}}{{\omega_{2}^{2} - \omega_{1}^{2} }}} \hfill \\ {\beta = \frac{{2\left( {\omega_{2} \xi_{2} - \omega_{1} \xi_{1} } \right)}}{{\omega_{2}^{2} - \omega_{1}^{2} }}} \hfill \\ \end{array} } \right. $$
(51)

where ω1 and ω2 denote the first two natural frequencies, and the damping coefficients are denoted by ξ1 and ξ2, respectively.

The mass matrix is given by

$$ {\mathbf{M}} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{1}^{{{\text{plate}}}} } & {\mathbf{0}} & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {} & {{\mathbf{M}}_{1}^{{{\text{flange}}}} } & {\mathbf{0}} & \ddots & \cdots & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {} & {} & \ddots & \ddots & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {} & {} & {} & {{\mathbf{M}}_{i}^{{{\text{plate}}}} } & {\mathbf{0}} & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {} & {} & {} & {} & {{\mathbf{M}}_{2i - 1}^{{{\text{flange}}}} } & {\mathbf{0}} & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {} & {} & {} & {} & {} & {{\mathbf{M}}_{2i}^{{{\text{flange}}}} } & {\mathbf{0}} & {\mathbf{0}} & \cdots & {\mathbf{0}} \\ {} & {} & {} & {} & {} & {} & {{\mathbf{M}}_{i + 1}^{{{\text{plate}}}} } & \ddots & \ddots & {\mathbf{0}} \\ {} & {} & {{\mathbf{Sym}}} & {} & {} & {} & {} & \ddots & {\mathbf{0}} & \vdots \\ {} & {} & {} & {} & {} & {} & {} & {} & {{\mathbf{M}}_{2n - 2}^{{{\text{flange}}}} } & {\mathbf{0}} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {{\mathbf{M}}_{n}^{{{\text{plate}}}} } \\ \end{array} } \right] $$
(52)

The specific compositions of matrices \({\mathbf{M}}_{i}^{{{\text{plate}}}}\) and \({\mathbf{M}}_{2i - 1}^{{{\text{flange}}}}\) are

$$ {\mathbf{M}}_{i}^{{{\text{plate}}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{i,u}^{{{\text{plate}}}} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{M}}_{i,v}^{{{\text{plate}}}} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{i,w}^{{{\text{plate}}}} } \\ \end{array} } \right],{\mathbf{M}}_{2i - 1}^{{{\text{flange}}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{2i - 1,u}^{{{\text{flange}}}} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{M}}_{2i - 1,v}^{{{\text{flange}}}} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{2i - 1,w}^{{{\text{flange}}}} } \\ \end{array} } \right](i = \, 1, \, 2, \ldots ,n) $$
(53)

The expressions of the elements in mass matrices \({\mathbf{M}}_{i}^{{{\text{plate}}}}\) and \({\mathbf{M}}_{2i - 1}^{{{\text{flange}}}}\) are expressed as

$$ {\mathbf{M}}_{i,u}^{{{\text{plate}}}} = \rho h\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {{\mathbf{U}}_{i} {\mathbf{U}}_{i}^{{\text{T}}} {\text{d}}x_{i} {\text{d}}y_{i} } } $$
(54)
$$ {\mathbf{M}}_{i,v}^{{{\text{plate}}}} = \rho h\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {{\mathbf{V}}_{i} {\mathbf{V}}_{i}^{{\text{T}}} {\text{d}}x_{i} {\text{d}}y_{i} } } $$
(55)
$$ {\mathbf{M}}_{i,w}^{{{\text{plate}}}} = \rho h\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {{\mathbf{W}}_{i} {\mathbf{W}}_{i}^{{\text{T}}} {\text{d}}x_{i} {\text{d}}y_{i} } } + \frac{1}{2}m_{b} \sum\limits_{j = 1}^{{N_{B} }} {\left. {{\mathbf{W}}_{i} {\mathbf{W}}_{i}^{{\text{T}}} } \right|_{{x_{j} = x_{bj} ,y_{j} = y_{bj} }} } $$
(56)
$$ {\mathbf{M}}_{2i - 1,u}^{{{\text{flange}}}} = \rho f_{{\text{k}}} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {{\mathbf{U}}_{2i - 1} {\mathbf{U}}_{2i - 1}^{{\text{T}}} {\text{d}}x_{f,2i - 1} {\text{d}}y_{f,2i - 1} } } $$
(57)
$$ {\mathbf{M}}_{i,v}^{{{\text{flange}}}} = \rho f_{{\text{k}}} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {{\mathbf{V}}_{i} {\mathbf{V}}_{i}^{{\text{T}}} {\text{d}}x_{f,i} {\text{d}}y_{f,i} } } $$
(58)
$$ {\mathbf{M}}_{i,w}^{{{\text{flange}}}} = \rho f_{{\text{k}}} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {{\mathbf{W}}_{i} {\mathbf{W}}_{i}^{{\text{T}}} {\text{d}}x_{f,i} {\text{d}}y_{f,i} } } $$
(59)

The stiffness matrix K is associating with the potential energy of the plates, flanges, boundary bolts, and the bolts between the flanges, which is expressed as

$$ {\mathbf{K}} = \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{{{\text{boundary}}}} + {\mathbf{K}}_{1}^{{{\text{plate}}}} } & {{\mathbf{K}}_{12} } & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {} & {{\mathbf{K}}_{1}^{{{\text{flange}}}} } & {{\mathbf{K}}_{23} } & \ddots & \cdots & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {} & {} & \ddots & \ddots & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {} & {} & {} & {{\mathbf{K}}_{i}^{{{\text{plate}}}} } & {{\mathbf{K}}_{i,2i - 1}^{{{\text{spring}}}} } & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {} & {} & {} & {} & {{\mathbf{K}}_{2i - 1}^{{{\text{flange}}}} } & {{\mathbf{K}}_{2i - 1,2i}^{{{\text{bolt}}}} } & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {} & {} & {} & {} & {} & {{\mathbf{K}}_{2i}^{{{\text{flange}}}} } & {{\mathbf{K}}_{2i,i + 1}^{{{\text{spring}}}} } & {\mathbf{0}} & \cdots & {\mathbf{0}} \\ {} & {} & {} & {} & {} & {} & {{\mathbf{K}}_{i + 1}^{{{\text{plate}}}} } & \ddots & \ddots & {\mathbf{0}} \\ {} & {} & {{\mathbf{Sym}}} & {} & {} & {} & {} & \ddots & {{\mathbf{K}}_{2n - 3,2n - 2}^{{{\text{bolt}}}} } & \vdots \\ {} & {} & {} & {} & {} & {} & {} & {} & {{\mathbf{K}}_{2n - 2}^{{{\text{flange}}}} } & {{\mathbf{K}}_{2n - 2,n}^{{{\text{spring}}}} } \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {{\mathbf{K}}_{n}^{{{\text{plate}}}} } \\ \end{array} } \right] $$
(60)

where Kboundary is the stiffness matrix related to the potential energy of boundary spring, and its expression is

$$ {\mathbf{K}}_{{{\text{boundary}}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{11} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{K}}_{22} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{33} } \\ \end{array} } \right] $$
(61)

where

$$ {\mathbf{K}}_{11} = \sum\limits_{\zeta = 1}^{2} {\int_{{y_{\zeta }^{b} - D}}^{{y_{\zeta }^{b} + D}} {k_{\zeta }^{u} \left( {0,y} \right)\left. {{\mathbf{U}}_{1} {\mathbf{U}}_{1}^{{\text{T}}} } \right|_{{x = - \frac{{L_{1} }}{2}}} } } {\text{d}}x{\text{d}}y $$
(62)
$$ {\mathbf{K}}_{22} = \sum\limits_{\zeta = 1}^{2} {\int_{{y_{\zeta }^{b} - D}}^{{y_{\zeta }^{b} + D}} {k_{\zeta }^{v} \left( {0,y} \right)\left. {{\mathbf{V}}_{1} {\mathbf{V}}_{1}^{{\text{T}}} } \right|_{{x = - \frac{{L_{1} }}{2}}} } } {\text{d}}x{\text{d}}y $$
(63)
$$ {\mathbf{K}}_{33} = \sum\limits_{\zeta = 1}^{2} {\int_{{y_{\zeta }^{b} - D}}^{{y_{\zeta }^{b} + D}} {k_{\zeta }^{w} \left( {0,y} \right)\left. {{\mathbf{W}}_{1} {\mathbf{W}}_{1}^{{\text{T}}} } \right|_{{x = - \frac{{L_{1} }}{2}}} } } {\text{d}}x{\text{d}}y $$
(64)

\({\mathbf{K}}_{i}^{{{\text{plate}}}}\) is the stiffness matrix related to the strain energy of i-th plate, given by

$$ {\mathbf{K}}_{i}^{{{\text{plate}}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{i,11}^{{{\text{plate}}}} } & {{\mathbf{K}}_{i,12}^{{{\text{plate}}}} } & {\mathbf{0}} \\ {{\mathbf{K}}_{i,21}^{{{\text{plate}}}} } & {{\mathbf{K}}_{i,22}^{{{\text{plate}}}} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{i,33}^{{{\text{plate}}}} } \\ \end{array} } \right] $$
(65)

where

$$ {\mathbf{K}}_{i,11}^{{{\text{plate}}}} = D_{e} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {\left[ {\frac{{\partial {\mathbf{U}}_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{U}}_{i}^{{\text{T}}} }}{{\partial x_{i} }} + \frac{1 - v}{2}\frac{{\partial {\mathbf{U}}_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{U}}_{i}^{{\text{T}}} }}{{\partial y_{i} }}} \right]} } {\text{d}}x_{i} {\text{d}}y_{i} $$
(66)
$$ {\mathbf{K}}_{i,22}^{{{\text{plate}}}} = D_{e} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {\left[ {\frac{{\partial {\mathbf{V}}_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{V}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + \frac{1 - v}{2}\frac{{\partial {\mathbf{V}}_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{V}}_{i}^{{\text{T}}} }}{{\partial x_{i} }}} \right]} } {\text{d}}x_{i} {\text{d}}y_{i} $$
(67)
$$ \begin{aligned} {\mathbf{K}}_{i,33}^{{{\text{plate}}}} = & D_{f} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {\left[ {\frac{{\partial^{2} {\mathbf{W}}_{i} }}{{\partial x_{i}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i}^{2} }} + 2v\left( {\frac{{\partial^{2} {\mathbf{W}}_{i} }}{{\partial x_{i}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i}^{2} }} + \frac{{\partial^{2} {\mathbf{W}}_{i} }}{{\partial y_{i}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i}^{2} }}} \right)} \right.} } \\ & \; + \left. {\frac{{\partial^{2} {\mathbf{W}}_{i} }}{{\partial y_{i}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i}^{2} }} + 2\left( {1 - v} \right)\frac{{\partial^{2} {\mathbf{W}}_{i} }}{{\partial x_{i} \partial y_{i} }}\frac{{\partial^{2} {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i} \partial y_{i} }}} \right]{\text{d}}x_{i} {\text{d}}y_{i} \\ \end{aligned} $$
(68)
$$ {\mathbf{K}}_{i,12}^{{{\text{plate}}}} = \left( {{\mathbf{K}}_{i,21}^{{{\text{plate}}}} } \right)^{{\text{T}}} = D_{e} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {\left[ {2v\frac{{\partial {\mathbf{U}}_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{V}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + \frac{1 - v}{2}\frac{{\partial {\mathbf{U}}_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{V}}_{i}^{{\text{T}}} }}{{\partial x_{i} }}} \right]} } {\text{d}}x_{i} {\text{d}}y_{i} $$
(69)

\({\mathbf{K}}_{i,2i - 1}^{{{\text{spring}}}}\) is the stiffness matrix related to the potential energy of spring between i-th plate and (2i-1)-th flange, whose expression is

$$ {\mathbf{K}}_{i,2i - 1}^{{{\text{spring}}}} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{i,2i - 1,1,3}^{{{\text{spring}}}} } \\ {\mathbf{0}} & {{\mathbf{K}}_{i,2i - 1,2,5}^{{{\text{spring}}}} } & {\mathbf{0}} \\ {{\mathbf{K}}_{i,2i - 1,3,1}^{{{\text{spring}}}} } & {\mathbf{0}} & {{\mathbf{K}}_{i,2i - 1,3,6}^{{{\text{spring}}}} } \\ \end{array} } \right] $$
(70)

where

$$ {\mathbf{K}}_{i,2i - 1,1,3}^{{{\text{spring}}}} = k_{x}^{f} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\left( {\left. {{\mathbf{U}}_{i} } \right|_{{x_{i} = - \frac{{L_{i} }}{2}}} \left. {{\mathbf{W}}_{2i - 2}^{{\text{T}}} } \right|_{{x_{f,2i - 2} = - \frac{{f_{g} }}{2}}} } \right){\text{d}}y_{i} } $$
(71)
$$ {\mathbf{K}}_{i,2i - 1,2,5}^{{{\text{spring}}}} = k_{y}^{f} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\left( {\left. {{\mathbf{V}}_{i} } \right|_{{x_{i} = - \frac{{L_{i} }}{2}}} \left. {{\mathbf{V}}_{2i - 2}^{{\text{T}}} } \right|_{{x_{f,2i - 2} = - \frac{{f_{g} }}{2}}} } \right){\text{d}}y_{i} } $$
(72)
$$ {\mathbf{K}}_{i,2i - 1,3,1}^{{{\text{spring}}}} = k_{z}^{f} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\left( {\left. {{\mathbf{W}}_{i} } \right|_{{x_{i} = - \frac{{L_{i} }}{2}}} \left. {{\mathbf{U}}_{2i - 2}^{{\text{T}}} } \right|_{{x_{f,2i - 2} = - \frac{{f_{g} }}{2}}} } \right){\text{d}}y_{i} } $$
(73)
$$ {\mathbf{K}}_{i,2i - 1,3,6}^{{{\text{spring}}}} = k_{\theta }^{f} \int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\left( {\frac{{\left. {\partial {\mathbf{W}}_{i} } \right|_{{x_{i} = - \frac{{L_{i} }}{2}}} }}{{\partial x_{i} }}\frac{{\partial \left. {{\mathbf{W}}_{2i - 2}^{{\text{T}}} } \right|_{{x_{f,2i - 2} = - \frac{{f_{g} }}{2}}} }}{{\partial x_{f,2i - 2} }}} \right){\text{d}}y_{i} } $$
(74)

\({\mathbf{K}}_{2i - 1,2i}^{{{\text{bolt}}}}\) is the stiffness matrix related to the potential energy of spring between (2i-1)-th flange and 2i-th flange, which expression is

$$ {\mathbf{K}}_{2i - 1,2i}^{{{\text{bolt}}}} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{K}}_{2i - 1,2i,2,2}^{{{\text{bolt}}}} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{2i - 1,2i,3,3}^{{{\text{bolt}}}} } \\ \end{array} } \right] $$
(75)

where

$$ {\mathbf{K}}_{2i - 1,2i,2,2}^{{{\text{bolt}}}} = \sum\limits_{\zeta = 1}^{{N_{b} }} {\int_{{y_{\zeta } - D}}^{{y_{\zeta } + D}} {\int_{ - D}^{D} {k_{\zeta }^{v} \left( {x,y} \right){\mathbf{V}}_{i} {\mathbf{V}}_{i + 1}^{{\text{T}}} } } } {\text{d}}x{\text{d}}y $$
(76)
$$ {\mathbf{K}}_{2i - 1,2i,3,3}^{{{\text{bolt}}}} = \sum\limits_{\zeta = 1}^{{N_{b} }} {\int_{{y_{\zeta } - D}}^{{y_{\zeta } + D}} {\int_{ - D}^{D} {k_{\zeta }^{\theta } \left( {x,y} \right)\frac{{\partial {\mathbf{W}}_{i} }}{\partial x}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{\partial x}} } } {\text{d}}x{\text{d}}y $$
(77)

Fe is the force vector related to base excitation, given by

$$ \begin{aligned} {\mathbf{F}}_{e} = & \left[ {{\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,1}^{{{\text{plate}}}} \, {\mathbf{F}}_{u,1}^{{{\text{flange}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{u,2}^{{{\text{flange}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,2}^{{{\text{plate}}}} \, \cdots } \right. \\ & \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,i}^{{{\text{plate}}}} \, {\mathbf{F}}_{u,2i - 1}^{{{\text{flange}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{u,2i}^{{{\text{flange}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,i + 1}^{{{\text{plate}}}} \, \cdots \\ & \left. { \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,n - 1}^{{{\text{plate}}}} \, {\mathbf{F}}_{u,2n - 3}^{{{\text{flange}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{u,2n - 2}^{{{\text{flange}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,n}^{{{\text{plate}}}} } \right]^{{\text{T}}} \\ \end{aligned} $$
(78)

where

$$ {\mathbf{F}}_{w,i}^{{{\text{plate}}}} \left( i \right) = \rho h\tilde{A}\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{L_{i} }}{2}}}^{{\frac{{L_{i} }}{2}}} {P_{m} \left( {x_{i} } \right)P_{n} \left( {y_{i} } \right)} } {\text{d}}x_{i} {\text{d}}y_{i} $$
(79)
$$ {\mathbf{F}}_{w,i + 1}^{{{\text{plate}}}} \left( i \right) = \rho h\tilde{A}\int_{{ - \frac{{b_{i + 1} }}{2}}}^{{\frac{{b_{i + 1} }}{2}}} {\int_{{ - \frac{{L_{i + 1} }}{2}}}^{{\frac{{L_{i + 1} }}{2}}} {P_{m} \left( {x_{i + 1} } \right)P_{n} \left( {y_{i + 1} } \right)} } {\text{d}}x_{i + 1} {\text{d}}y_{i + 1} $$
(80)
$$ {\mathbf{F}}_{u,2i - 1}^{{{\text{flange}}}} \left( i \right) = \rho h\tilde{A}\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {P_{m} \left( {x_{f,2i - 1} } \right)P_{n} \left( {y_{f,2i - 1} } \right){\text{d}}x_{f,2i - 1} {\text{d}}y_{f,2i - 1} } } $$
(81)
$$ {\mathbf{F}}_{u,2i}^{{{\text{flange}}}} \left( i \right) = \rho h\tilde{A}\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {P_{m} \left( {x_{f,2i} } \right)P_{n} \left( {y_{f,2i} } \right){\text{d}}x_{f,2i} {\text{d}}y_{f,2i} } } $$
(82)

Fbolt is the force vector related to constraining forces of the bolts, which is expressed as

$$ \begin{aligned} {\mathbf{F}}_{{{\text{bolt}}}} = & \left[ {{\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{u,1}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,1}^{{{\text{bolt}}}} \, {\mathbf{F}}_{u,2}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,2}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, \cdots } \right. \\ & \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{u,2i - 1}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,2i - 1}^{{{\text{bolt}}}} \, {\mathbf{F}}_{u,2i}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,2i}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, \cdots \\ & \left. { \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{F}}_{u,2n - 3}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,2n - 3}^{{{\text{bolt}}}} \, {\mathbf{F}}_{u,2n - 2}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{F}}_{w,2n - 2}^{{{\text{bolt}}}} \, {\mathbf{0}} \, {\mathbf{0}} \, {\mathbf{0}}} \right]^{{\text{T}}} \\ \end{aligned} $$
(83)

where

$$ {\mathbf{F}}_{u,2i - 1}^{{{\text{bolt}}}} \left( i \right) = - \sum\limits_{\zeta = 1}^{{N_{b} }} {\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {\delta \left( {x_{f,2i - 1} - x_{2i - 1}^{\zeta } } \right)\delta \left( {y_{f,2i - 1} - y_{2i - 1}^{\zeta } } \right)f_{u}^{\zeta } u_{i}^{\zeta } \left( {x_{f,2i - 1} ,y_{f,2i - 1} } \right){\text{d}}x_{f,2i - 1} {\text{d}}y_{f,2i - 1} } } } $$
(84)
$$ {\mathbf{F}}_{u,2i}^{{{\text{bolt}}}} \left( i \right) = \sum\limits_{\zeta = 1}^{{N_{b} }} {\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {\delta \left( {x_{f,2i} - x_{2i}^{\zeta } } \right)\delta \left( {y_{f,2i} - y_{2i}^{\zeta } } \right)f_{u}^{\zeta } u_{i}^{\zeta } \left( {x_{f,2i} ,y_{f,2i} } \right){\text{d}}x_{f,2i} {\text{d}}y_{f,2i} } } } $$
(85)
$$ {\mathbf{F}}_{w,2i - 1}^{{{\text{bolt}}}} \left( i \right) = - \sum\limits_{\zeta = 1}^{{N_{b} }} {\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {\delta \left( {x_{f,2i - 1} - x_{2i - 1}^{\zeta } } \right)\delta \left( {y_{f,2i - 1} - y_{2i - 1}^{\zeta } } \right)f_{w}^{\zeta } w_{i}^{\zeta } \left( {x_{f,2i - 1} ,y_{f,2i - 1} } \right){\text{d}}x_{f,2i - 1} {\text{d}}y_{f,2i - 1} } } } $$
(86)
$$ {\mathbf{F}}_{w,2i}^{{{\text{bolt}}}} \left( i \right) = \sum\limits_{\zeta = 1}^{{N_{b} }} {\int_{{ - \frac{{b_{i} }}{2}}}^{{\frac{{b_{i} }}{2}}} {\int_{{ - \frac{{f_{{\text{g}}} }}{2}}}^{{\frac{{f_{{\text{g}}} }}{2}}} {\delta \left( {x_{f,2i} - x_{2i}^{\zeta } } \right)\delta \left( {y_{f,2i} - y_{2i}^{\zeta } } \right)f_{w}^{\zeta } w_{i}^{\zeta } \left( {x_{f,2i} ,y_{f,2i} } \right){\text{d}}x_{f,2i} {\text{d}}y_{f,2i} } } } $$
(87)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W.C., Wang, Y.Q. Nonlinear vibrations of bolted flange joint plate system considering the stick–slip–separation state: theory and experiment. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09548-1

Keywords

Navigation