Skip to main content
Log in

A non-degenerate m-dimensional integer domain chaotic map model over GF(2n)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To solve the problem of dynamic degradation over finite precision platform of chaotic map, we proposed a non-degenerate m-dimensional (m ≥ 2) integer domain chaotic map (mD-IDCM) model over GF(2n), which can be applied to construct arbitrary non-degenerate m-dimensional integer domain chaotic map with m positive Lyapunov exponents. Then, we proved the strong connectivity of state transition graphs of mD-IDCM, and further proved that the mD-IDCM is chaotic in the sense of Devaney. In addition, we proved the boundedness of Lyapunov exponents. To verify the effectiveness of mD-IDCM, we instantiated it to construct two maps and analyzed their dynamical behavior. Experimental results indicated that the integer domain chaotic maps constructed by mD-IDCM have ergodicity within a sufficient larger chaotic range and exhibit complex dynamic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Datasets supporting the concluions of this study are included within the paper.

References

  1. Vaidyanathan, S., Volos, C.: Advances and applications in chaotic systems. Springer, Berlin (2016)

    Book  Google Scholar 

  2. Wang, M., Liu, H., Zhao, M.: Construction of a non-degeneracy 3D chaotic map and application to image encryption with keyed S-box. Multimed. Tools Appl. 82, 34541–34563 (2023)

    Article  Google Scholar 

  3. Zhao, M., Liu, H.: Construction of a non-degenerate 2D chaotic map with application to irreversible parallel key expansion algorithm. Int. J. Bifurc. Chaos 32(06), 2250081 (2022)

    Article  Google Scholar 

  4. Liu, H., Wang, X., Kadir, A.: Constructing chaos-based hash function via parallel impulse perturbation. Soft. Comput. 25(16), 11077–11086 (2021)

    Article  Google Scholar 

  5. Demir, F.B., Tuncer, T., Kocamaz, A.F.: A chaotic optimization method based on logistic-sine map for numerical function optimization. Neural Comput. Appl. 32, 14227–14239 (2020)

    Article  Google Scholar 

  6. Curry, J.H.: A generalized Lorenz system. Commun. Math. Phys. 60, 193–204 (1978)

    Article  MathSciNet  Google Scholar 

  7. Wang, C., Fan, C., Ding, Q.: Constructing discrete chaotic systems with positive Lyapunov exponents. Int. J. Bifurc. Chaos 28(07), 1850084 (2018)

    Article  MathSciNet  Google Scholar 

  8. Arai, T.: Devaney’s and Li–Yorke’s chaos in uniform spaces. J. Dyn. Control Syst. 24(1), 93–100 (2018)

    Article  MathSciNet  Google Scholar 

  9. Zhu, H., Qi, W., Ge, J., et al.: Analyzing Devaney chaos of a sine-cosine compound function system. Int. J. Bifurc. Chaos 28(14), 1850176 (2018)

    Article  MathSciNet  Google Scholar 

  10. Wang, Q., Yu, S., Guyeux, C., et al.: Theoretical design and circuit implementation of integer domain chaotic systems. Int. J. Bifurc. Chaos 24(10), 1450128 (2014)

    Article  MathSciNet  Google Scholar 

  11. Fan, C., Ding, Q.: A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain. Chin. Phys. B 32(1), 010501 (2023)

    Article  Google Scholar 

  12. Wang, Q., Yu, S., Li, C., et al.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 63(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  13. Wang, Q., Yu, S., Guyeux, C., et al.: Constructing higher-dimensional digital chaotic systems via loop-state contraction algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 68(9), 3794–3807 (2021)

    Article  Google Scholar 

  14. Shen, C., Yu, S., Lü, J., et al.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 61(3), 854–864 (2013)

    Article  Google Scholar 

  15. Bashier, E., Ahmed, G., Othman, H.E., et al.: Hiding secret messages using artificial DNA sequences generated by integer chaotic maps. Int. J. Comput. Appl. 70(15), 1–5 (2013)

    Google Scholar 

  16. Bashier, E., Jabeur, T.B.: An efficient secure image encryption algorithm based on total shuffling, integer chaotic maps and median filter. J. Internet Serv. Inf. Secur. 11(2), 46–77 (2021)

    Google Scholar 

  17. Liu, J., Zhong, M., Liu, B., et al.: Design of three-dimensional dynamic integer tent map and its image encryption algorithm. Multimed. Tools Appl. 80, 19219–19236 (2021)

    Article  Google Scholar 

  18. Cao, Y., Liu, H., Xu, D.: Constructing a nondegenerate 2D integer-domain hyperchaotic map over GF (2n) with application in parallel hashing. Int. J. Bifurc. Chaos 33(15), 2350181 (2023)

    Article  Google Scholar 

  19. Shah, T., Ali, A., Khan, M., et al.: Galois Ring GR(23,8) dependent 24×24 S-Box design: An RGB image encryption application. Wirel. Pers. Commun. 113(2), 1201–1224 (2020)

    Article  Google Scholar 

  20. Hussain, I., Shah, T., Gondal, M.A., et al.: A novel image encryption algorithm based on chaotic maps and GF (28) exponent transformation. Nonlinear Dyn. 72, 399–406 (2013)

    Article  Google Scholar 

  21. Chinram, R., Bano, M., Habib, U., et al.: Highly secured and quickest image encryption algorithm based on trigonometric chaotic map and S-box. Soft. Comput. 27, 11111–11123 (2023)

    Article  Google Scholar 

  22. Kinsner, W.: Characterizing chaos through Lyapunov metrics. IEEE Trans. Syst. Man Cybern. Part C 36(2), 141–151 (2006)

    Article  Google Scholar 

  23. Sun, C., Wang, E., Zhao, B.: Image encryption scheme with compressed sensing based on a new six-dimensional non-degenerate discrete hyperchaotic system and plaintext-related scrambling. Entropy 23(3), 291 (2021)

    Article  MathSciNet  Google Scholar 

  24. Hua, Z., Zhang, Y., Bao, H., et al.: N-dimensional polynomial chaotic system with applications. IEEE Trans. Circuits Syst. I Regular Pap. 69(2), 784–797 (2022)

    Article  Google Scholar 

  25. Shen, C., Yu, S., Lü, J., et al.: Constructing hyperchaotic systems at will. Int. J. Circuit Theory Appl. 43(12), 2039–2056 (2016)

    Article  Google Scholar 

  26. Banks, J., Brooks, J., Cairns, G., et al.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992)

    Article  MathSciNet  Google Scholar 

  27. Zhao, G., Li, H., Ma, Y., et al.: Discrete dynamic system without degradation-configure n positive Lyapunov exponents. J. Electron. Inf. Technol. 41(9), 2280–2286 (2019)

    Google Scholar 

  28. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591 (1983)

    Article  Google Scholar 

  29. Liu, R., Liu, H., Zhao, M.: Reveal the correlation between randomness and Lyapunov exponent of n-dimensional non-degenerate hyper chaotic map. Integration 93, 102071 (2023)

    Article  Google Scholar 

  30. Delgado-Bonal, A., Marshak, A.: Approximate entropy and sample entropy: A comprehensive tutorial. Entropy 21(6), 541 (2019)

    Article  MathSciNet  Google Scholar 

  31. Hua, Z., Zhou, Y.: Exponential chaotic model for generating robust chaos. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3713–3724 (2019)

    Article  Google Scholar 

  32. Si, Y., Liu, H., Chen, Y.: Constructing a 3D exponential hyperchaotic map with application to PRNG. Int. J. Bifurc. Chaos 32(07), 2250095 (2022)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Z., Tang, J., Ni, H., et al.: Image adaptive encryption algorithm using a novel 2D chaotic system. Nonlinear Dyn. 111(11), 10629–10652 (2023)

    Article  Google Scholar 

  34. Si, Y., Liu, H., Zhao, M.: Constructing keyed strong S-Box with higher nonlinearity based on 2D hyper chaotic map and algebraic operation. Integration 88, 269–277 (2023)

    Article  Google Scholar 

  35. Wang, Q., Yu, S., Fang, X.: Study on a new chaotic bitwise dynamical system and its FPGA implementation. Chin. Phys. B 24(6), 060503 (2015)

    Article  Google Scholar 

Download references

Funding

This research is supported by the Natural Science Foundation of Shandong Province (No. ZR2022MF232), and the Teaching and Research Program of University of Jinan (No. J2203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Liu, H. A non-degenerate m-dimensional integer domain chaotic map model over GF(2n). Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09517-8

Keywords

Navigation