Skip to main content
Log in

Exact solutions of the time-fractional extended (3+1)-dimensional Kadomtsev–Petviashvili equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The extended (3+1)-dimensional Kadomtsev–Petviashvili equation is widely used in such domains as fluid mechanics, optics and so on. In this paper, we derive a new time-fractional extended (3+1)-dimensional Kadomtsev–Petviashvili equation based on the conformable fractional derivative for the first time. With the help of the Hirota bilinear method, we obtain the N-soliton, breather and lump solutions of the time-fractional extended (3+1)-dimensional Kadomtsev–Petviashvili equation. In addition, the semi-inverse variational method and the advanced \(exp(\phi (-\xi ))\)-expansion method are introduced to construct the exact solutions of this equation. By choosing suitable parameters, these solutions which can help solve issues in the marine science, fluctuation theory and other fields are presented through 3D graphics, contour and density plots. The findings of this work can further extend the study of fractional partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Wang, K.L.: Exact travelling wave solution for the local fractional Camassa-Holm-Kadomtsev-Petviashvili equation. Alex. Eng. J. 63, 371–376 (2023)

    Google Scholar 

  2. Kaur, L., Wazwaz, A.-M.: Dynamical analysis of soliton solutions for space-time fractional Calogero-Degasperis and Sharma-Tasso-Olver equations. Rom. Rep. Phys. 74, 108 (2022)

    Google Scholar 

  3. Saini, S., Kumar, R., Arora, R., Kumar, K., et al.: Symmetry analysis and wave solutions of the fisher equation using conformal fractional derivatives. J. Appl. Math. (2023). https://doi.org/10.1155/2023/1633450

    Article  MathSciNet  Google Scholar 

  4. Yaslan, H.: Legendre collocation method for the nonlinear space-time fractional partial differential equations. Iran. J. Sci. Technol. Trans. A Sci. 44, 239–249 (2020)

    MathSciNet  Google Scholar 

  5. Khristenko, U., Wohlmuth, B.: Solving time-fractional differential equations via rational approximation. IMA J. Numer. Anal. 43(3), 1263–1290 (2023)

    MathSciNet  Google Scholar 

  6. Obeidat, N.A., Bentil, D.E.: Convergence analysis of the fractional decomposition method with applications to time-fractional biological population models. Num. Methods Part. Differ. Equ. 39(1), 696–715 (2023)

    MathSciNet  Google Scholar 

  7. Alam, M.N., Akash, H.S., Saha, U., Hasan, M.S., Parvin, M.W., Tunç, C.: Bifurcation analysis and solitary wave analysis of the nonlinear fractional soliton neuron model. Iran. J. Sci. (2023). https://doi.org/10.1007/s40995-023-01555-y

    Article  MathSciNet  Google Scholar 

  8. Agarwal, R.P., Gala, S., Ragusa, M.A.: A regularity criterion in weak spaces to Boussinesq equations. Mathematics 8(6), 920 (2020)

    Google Scholar 

  9. Gala, S., Ragusa, M.A.: A logarithmic regularity criterion for the two-dimensional MHD equations. J. Math. Anal. Appl. 444(2), 1752–1758 (2016)

    MathSciNet  Google Scholar 

  10. Wang, K.: New perspective to the fractal Konopelchenko–Dubrovsky equations with M-truncated fractional derivative. Int. J. Geom. Methods Mod. Phys. 20(05), 2350072 (2023)

    MathSciNet  Google Scholar 

  11. Hamid, M., Usman, M., Zubair, T., Haq, R.U., Shafee, A.: An efficient analysis for N-soliton, lump and lump-kink solutions of time-fractional (2+1)-Kadomtsev–Petviashvili equation. Phys. A Stat. Mech. Appl. 528, 121320 (2019)

    MathSciNet  Google Scholar 

  12. Khalil, R., Horani, A.: Mohammed and Yousef, Abdelrahman and Sababheh, Mohammad, a new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Google Scholar 

  13. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  Google Scholar 

  14. Biswas, S., Ghosh, U., Raut, S.: Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method. Chaos, Solitons Fractals 172, 113520 (2023)

    MathSciNet  Google Scholar 

  15. Gupta, R.K.: Bifurcation analysis, chaotic analysis and diverse optical soliton solutions of time-fractional (2+1) dimensional generalized Camassa-Holm Kadomtsev-Petviashvili equation arising in shallow water waves. Phys. Scr. 98(12), 125241 (2023)

    ADS  Google Scholar 

  16. Ullah, M.S.: Interaction solution to the (3+1)-dimension negative-order KdV first structure. Part. Differ. Equ. Appl. Math. 8, 100566 (2023)

    Google Scholar 

  17. Younis, M., Zafar, A.: Exact solution to nonlinear differential equations of fractional order via (G’/G)-expansion method. Appl. Math. 5(1), 1 (2014)

    Google Scholar 

  18. Guner, O., Atik, H., Kayyrzhanovich, A.A.: New exact solution for space-time fractional differential equations via (G’/G)-expansion method. Optik 130, 696–701 (2017)

    ADS  Google Scholar 

  19. Alam, M.N., Islam, S.R.: The agreement between novel exact and numerical solutions of nonlinear models. Part. Differ. Equ. Appl. Math. 8, 100584 (2023)

    Google Scholar 

  20. Nur, A.M.: Soliton solutions to the electric signals in telegraph lines on the basis of the tunnel diode. Part. Differ. Equ. Appl. Math. 7, 100491 (2023)

    Google Scholar 

  21. Nur, A.M.: An analytical technique to obtain traveling wave solutions to nonlinear models of fractional order. Part. Differ. Equ. Appl. Math. 8, 100533 (2023)

    Google Scholar 

  22. Nur, A.M., Islam, S., İlhan, O.A., Bulut, H.: Some new results of nonlinear model arising in incompressible Visco-elastic Kelvin-Voigt fluid. Math. Methods Appl. Sci. 45(16), 10347–10362 (2022)

    MathSciNet  Google Scholar 

  23. Saha Ray, S.: New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods. Chin. Phys. B 25(4), 040204 (2016)

    ADS  Google Scholar 

  24. Murad, M.A.S., Hamasalh, F.K., Ismael, H.F.: Optical soliton solutions for time-fractional Fokas system in optical fiber by new Kudryashov approach. Optik 280, 170784 (2023)

    ADS  Google Scholar 

  25. Nur, A.M., Ilhan, O.A., Manafian, J., Asjad, M.I., Rezazadeh, H., Baskonus, H.M., Macias-Diaz, J.E.: New results of some of the conformable models arising in dynamical systems. Adv. Math. Phys. 1–13, 2022 (2022)

    MathSciNet  Google Scholar 

  26. Zhou, Q., Mirzazadeh, M., Zerrad, E., Biswas, A., Belic, M.: Bright, dark, and singular solitons in optical fibers with Spatio-temporal dispersion and spatially dependent coefficients. J. Mod. Opt. 63(10), 950–954 (2016)

    ADS  CAS  Google Scholar 

  27. Guner, O., Bekir, A.: The Exp-function method for solving nonlinear space-time fractional differential equations in mathematical physics. J. Assoc. Arab Univ. Basic Appl. Sci. 24, 277–282 (2017)

    Google Scholar 

  28. Ananna, S.N., Tianqing An, Md., Asaduzzaman, Md., Rana, M.S., et al.: Sine-Gordon expansion method to construct the solitary wave solutions of a family of 3D fractional WBBM equations. Results Phys. 40, 105845 (2022)

    Google Scholar 

  29. Ahmadinia, M., Safari, Z.: Analysis of local discontinuous Galerkin method for time-space fractional sine-Gordon equations. Appl. Numer. Math. 148, 1–17 (2020)

    MathSciNet  Google Scholar 

  30. Bashar, M.H., Tahseen, T., Nur Hasan, S.H.A.H.E.N.: Application of the advanced exp (-\(\varphi \) (\(\xi \)))-expansion method to the nonlinear conformable time-fractional partial differential equations. Turk. J. Math. Comput. Sci. 13(1), 68–80 (2021)

    Google Scholar 

  31. Asghari, Y., Eslami, M., Rezazadeh, H.: Soliton solutions for the time-fractional nonlinear differential-difference equation with conformable derivatives in the ferroelectric materials. Opt. Quant. Electron. 55(4), 289 (2023)

    Google Scholar 

  32. Gómez, C.A., Salas, A.H.: The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation. Appl. Math. Comput. 217(4), 1408–1414 (2010)

    MathSciNet  Google Scholar 

  33. Manafian, J., Lakestani, M.: A new analytical approach to solve some of the fractional-order partial differential equations. Indian J. Phys. 91, 243–258 (2017)

    ADS  CAS  Google Scholar 

  34. Seadawy, A.R., Manafian, J.: New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod. Results Phys. 8, 1158–1167 (2018)

    ADS  Google Scholar 

  35. Mohammed, W.W., Qahiti, R., Ahmad, H., Baili, J., Mansour, F.E., El-Morshedy, M.: Exact solutions for the system of stochastic equations for the ion sound and Langmuir waves. Results Phys. 30, 104841 (2021)

    Google Scholar 

  36. Shahen, N.H.M., Ali, M.S., Rahman, M.M., et al.: Interaction among lump, periodic, and kink solutions with dynamical analysis to the conformable time-fractional Phi-four equation. Part. Differ. Equ. Appl. Math. 4, 100038 (2021)

    Google Scholar 

  37. Wang, K.-J., Peng, X., Shi, F.: Nonlinear Dynamic Behaviors Of The Fractional (3+1)-Dimensional Modified Zakharov-Kuznetsov Equation. Fractals 31(07), 2350088 (2023)

    ADS  Google Scholar 

  38. Wazwaz, A.-M.: Painlevé integrability and lump solutions for two extended (3+1)-and (2+1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. 111(4), 3623–3632 (2023)

    Google Scholar 

  39. Shen, Y., Tian, B., Cheng, C.-D., Zhou, T.-Y.: N-soliton, M th-order breather, H th-order lump, and hybrid solutions of an extended (3+1)-dimensional Kadomtsev-Petviashvili equation. Nonlinear Dyn. 111(11), 10407–10424 (2023)

    Google Scholar 

  40. Rezazadeh, H., et al.: New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chin. J. Phys. 56(6), 2805–2816 (2018)

    Google Scholar 

  41. Gupta, R.K., Yadav, P.: Optical solitons and exact solutions of the (2+1) dimensional conformal time fractional Kundu-Mukherjee-Naskar equation via novel extended techniques. Phys. Scr. 98(6), 065015 (2023)

    ADS  Google Scholar 

  42. Sherriffe, D., Behera, D.: Analytical approach for travelling wave solution of non-linear fifth-order time-fractional Korteweg-De Vries equation. Pramana 96(2), 64 (2022)

    ADS  Google Scholar 

  43. Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13(1), 000010151520150081 (2015)

    MathSciNet  Google Scholar 

  44. Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov-Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020)

    Google Scholar 

  45. Biswas, S., Ghosh, U.: Formation and shock solutions of the time fractional (2+ 1) and (3+ 1)-Dimensional Boiti-Leon-Manna-Pempinelli equations. Int. J. Appl. Comput. Math. 9(3), 20 (2023)

    MathSciNet  Google Scholar 

  46. He, J.-H.: Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet Eng. 14(1), 23–28 (1997)

    ADS  Google Scholar 

  47. Wang, K.-J., Shi, F., Wang, G.-D.: Periodic wave structure of the fractal generalized fourth-order Boussinesq equation traveling along the non-smooth boundary. Fractals 30(09), 2250168 (2022)

    ADS  Google Scholar 

  48. Wang, K.J., Shi, F., Wang, G.D.: Abundant soliton structures to the (2+1)-dimensional Heisenberg ferromagnetic spin chain dynamical model. Adv. Math. Phys. (2023). https://doi.org/10.1155/2023/4348758

    Article  MathSciNet  Google Scholar 

  49. He, J.-H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)

    ADS  MathSciNet  Google Scholar 

Download references

Funding

The work is partly supported by Shanghai Sailing Special Project (Project 22YF1400900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcai Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Su, N. & Deng, A. Exact solutions of the time-fractional extended (3+1)-dimensional Kadomtsev–Petviashvili equation. Nonlinear Dyn 112, 5575–5590 (2024). https://doi.org/10.1007/s11071-024-09318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09318-z

Keywords

Navigation