Skip to main content
Log in

Stochastic bifurcation and dynamic reliability analyses of nonlinear MDOF vehicle system with generalized fractional damping via DPIM

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The generalized fractional derivative is a useful tool for describing the mechanical property of viscoelastic dampers in vehicles. However, the complex integral form of the generalized fractional operator and the non-Markov property of fractional system make it challenging to perform stochastic dynamic analysis on multi-degree-of-freedom (MDOF) vehicle systems with generalized fractional damping. Thereby, the main purpose of this paper is to explore the stochastic dynamic characteristics of generalized fractional systems in the framework of the direct probability integral method (DPIM). To this end, a vehicle model with generalized fractional dampers is first constructed to simulate the driving process on uneven pavement, in which the random pavement roughness and discrete impulse excitation are described as continuous Gaussian white noise and discrete Poisson white noise, respectively. Then, the equivalent MDOF stochastic system of the model is derived, and the corresponding probability density integral equation (PDIE) is further established for uncertainty propagation. Benefiting from the historical memory of PDIE, a DPIM-based strategy is proposed to address the random vibration problem of the generalized fractional MDOF system. Finally, the stochastic bifurcation and dynamic reliability analyses of vehicle systems with generalized fractional damping are realized via the proposed strategy. The results indicate that the change of generalized fractional order, as a key design parameter, will cause stochastic bifurcation phenomenon and stochastic chaotic motion, which remarkably affects the vehicle ride comfort and driving safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gemant, A.: On fractional differentials. Philos. Mag. Ser. 25, 540–549 (1938)

    Google Scholar 

  2. Bosworth, R.C.L.: A definition of plasticity. Nature 157, 447 (1946)

    CAS  ADS  PubMed  Google Scholar 

  3. Lewandowski, R., Pawlak, Z.: Response spectrum method for building structures with viscoelastic dampers described by fractional derivatives. Eng. Struct. 171, 1017–1026 (2018)

    Google Scholar 

  4. Ahmed, E.M., Member, S., Mohamed, E.A., Elmelegi, A.: Optimum modified fractional order controller for future electric vehicles and renewable energy-based interconnected power systems. IEEE Access 9, 29993–30010 (2021)

    Google Scholar 

  5. Chávez-Vázquez, S., Gómez-Aguilar, J.F., Lavín-Delgado, J.E., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Applications of fractional operators in robotics: a review. J. Intell. Robot. Syst. 104, 63 (2022)

    Google Scholar 

  6. Mishra, D., Roy, R.B., Dutta, S., Pal, S.K., Chakravarty, D.: A review on sensor based monitoring and control of friction stir welding process and a roadmap to Industry 4.0. J. Manuf. Process. 36, 373–397 (2018)

    Google Scholar 

  7. Lomoriello, I.S., Sigismund, S., Day, K.J.: Biophysics of endocytic vesicle formation: a focus on liquid–liquid phase separation. Curr. Opin. Cell Biol. 75, 102068 (2022)

    Google Scholar 

  8. Teodoroa, G.S., Machado, J.T.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019)

    MathSciNet  ADS  Google Scholar 

  9. Sun, H.G., Yong, Z., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simulat. 64, 213–231 (2018)

    ADS  Google Scholar 

  10. Giuseppe, F., Massimiliano, Z.: Advanced materials modelling via fractional calculus: challenges and perspectives. Philos. T. R. Soc. A. 378, 20200050 (2020)

    Google Scholar 

  11. Liu, Q., Xu, Y., Kurths, J.: Active vibration suppression of a novel airfoil model with fractional order viscoelastic constitutive relationship. J. Sound Vib. 432, 50–64 (2018)

    ADS  Google Scholar 

  12. Xu, J., Li, J.: Stochastic dynamic response and reliability assessment of controlled structures with fractional derivative model of viscoelastic dampers. Mech. Syst. Signal Pr. 72–73, 865–896 (2016)

    Google Scholar 

  13. Nourian, P., Islam, R., Khare, R.: Implementation of active probe rheology simulation technique for determining the viscoelastic moduli of soft matter. J. Rheol. 65(4), 617–632 (2021)

    CAS  ADS  Google Scholar 

  14. Xu, Y.S., Xu, Z.D., Guo, Y.Q., Ge, T., Xu, C., Huang, X.H.: Theoretical and experimental study of viscoelastic damper based on fractional derivative approach and micromolecular structures. J. Vib. Acoust. 141(3), 031010 (2019)

    Google Scholar 

  15. Tanner, R.I.: Computation and experiment in non-colloidal suspension rheology. J. Non-Newton Fluid 281, 104282 (2020)

    MathSciNet  CAS  Google Scholar 

  16. Agrawal, O.P.: Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59(5), 1852–1864 (2010)

    MathSciNet  Google Scholar 

  17. Zhang, H.B., Chen, H.B.: Generalized variational problems and Birkhoff equations. Nonlinear Dyn. 83, 347–354 (2016)

    MathSciNet  Google Scholar 

  18. Song, C.J., Shen, S.L.: Noether symmetry method for Birkhoffian systems in terms of generalized fractional operators. Theor. Appl. Mech. Lett. 11(6), 100298 (2021)

    Google Scholar 

  19. Xu, Y., Li, Y.G., Liu, D., Jia, W.T., Huang, H.: Responses of Duffing oscillator with fractional damping and random phase. Nonlinear Dyn. 74, 745–753 (2013)

    MathSciNet  Google Scholar 

  20. Xu, Y., Li, Y.G., Liu, D.: A method to stochastic dynamical systems with strong nonlinearity and fractional damping. Nonlinear Dyn. 83, 2311–2321 (2016)

    MathSciNet  Google Scholar 

  21. Dai, H.Z., Zhang, R.J., Zhang, H.: A new fractional moment equation method for the response prediction of nonlinear stochastic systems. Nonlinear Dyn. 97(4), 2219–2230 (2019)

    Google Scholar 

  22. Behinfaraz, R., Ghaemi, S., Khanmohammadi, S.: Adaptive synchronization of new fractional-order chaotic systems with fractional adaption laws based on risk analysis. Math. Method. Appl. Sci. 42(6), 1772–1785 (2019)

    MathSciNet  ADS  Google Scholar 

  23. Kougioumtzoglou, I.A., Ni, P., Mitseas, I.P., Fragkoulis, V.C., Beer, M.: An approximate stochastic dynamics approach for design spectrum based response analysis of nonlinear structural systems with fractional derivative elements. Int. J. Nonlin. Mech. 146, 104178 (2022)

    Google Scholar 

  24. Pomaro, B., Spanos, P.D.: Extended statistical linearization approach for estimating non-stationary response statistics of systems comprising fractional derivative elements. Probabilist. Eng. Mech. 74, 103471 (2023)

    Google Scholar 

  25. Yang, S.P., Chen, L.Q., Li, S.H.: Dynamics of Vehicle-Road Coupled System. Science Press, Beijing (2015)

    Google Scholar 

  26. Amabili, M., Balasubramanian, P., Ferrari, G.: Nonlinear vibrations and damping of fractional viscoelastic rectangular plates. Nonlinear Dyn. 103, 3581–3609 (2021)

    Google Scholar 

  27. Zhang, C.Y., Xiao, J.: Chaotic behavior and feedback control of magnetorheological suspension system with fractional-order derivative. ASME J. Comput. Nonlinear Dynam. 13(2), 021007 (2018)

    Google Scholar 

  28. Tuwa, P.R.N., Molla, T., Noubissie, S., Kingni, S.T., Rajagopal, K.: Analysis of a quarter car suspension based on a Kelvin-Voigt viscoelastic model with fractional-order derivative. Int. J. Nonlin. Mech. 137, 103818 (2021)

    Google Scholar 

  29. Chen, E.L., Xing, W.C., Wang, M.Q., Ma, W.L., Chang, Y.J.: Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation. Chaos Soliton. Fract. 152, 111300 (2021)

    MathSciNet  Google Scholar 

  30. Zhu, H.J., Yang, J., Zhang, Y.Q., Feng, X.X., Ma, Z.: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort. Nonlinear Dyn. 89, 1545–1568 (2017)

    Google Scholar 

  31. Yang, S.P., Li, S.H., Lu, Y.J.: Investigation on dynamical interaction between a heavy vehicle and road pavement. Vehicle Syst. Dyn. 48(8), 923–944 (2010)

    ADS  Google Scholar 

  32. Spanos, P.D., Evangelatos, G.I.: Response of a non-linear system with restoring forces governed by fractional derivatives-time domain simulation and statistical linearization solution. Soil Dyn. Earthq. Eng. 30(9), 811–821 (2010)

    Google Scholar 

  33. Alonso, D., De Vega, I.: Multiple-time correlation functions for non-Markovian interaction: beyond the quantum regression theorem. Phys. Rev. Lett. 94(20), 200403 (2005)

    ADS  PubMed  Google Scholar 

  34. Chen, L.C., Zhuang, Q.Q., Zhu, W.Q.: Response of SDOF nonlinear oscillators with lightly fractional derivative damping under real noise excitations. Eur. Phys. J.: Spec. Top. 193(1), 81–92 (2011)

    Google Scholar 

  35. Santos, K.R.M.D., Brudastova, O., Kougioumtzoglou, I.A.: Spectral identification of nonlinear multi-degree-of-freedom structural systems with fractional derivative terms based on incomplete non-stationary data. Struct. Saf. 86, 101975 (2020)

    Google Scholar 

  36. Kong, F., Zhang, Y.X., Zhang, Y.J.: Non-stationary response power spectrum determination of linear/non-linear systems endowed with fractional derivative elements via harmonic wavelet. Mech. Syst. Signal Pr. 162, 108024 (2022)

    Google Scholar 

  37. Luo, Y., Spanos, P.D., Chen, J.B.: Stochastic response determination of multi-dimensional nonlinear systems endowed with fractional derivative elements by the GE-GDEE. Int. J. Nonlin. Mech. 147, 104247 (2022)

    Google Scholar 

  38. Luo, Y., Lyu, M.Z., Chen, J.B., Spanos, P.D.: Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise. Theor. Appl. Mech. Lett. 3(13), 100436 (2023)

    Google Scholar 

  39. Zan, W.R., Jia, W.T., Xu, Y.: Reliability of dynamical systems with combined Gaussian and Poisson white noise via path integral method. Probabilist. Eng. Mech. 6, 103252 (2022)

    Google Scholar 

  40. Chen, G.H., Yang, D.X.: Direct probability integral method for stochastic response analysis of static and dynamic structural systems. Comput. Meth. Appl. Mech. Eng. 357(1), 112612 (2019)

    MathSciNet  ADS  Google Scholar 

  41. Yang, Y.G., Xu, W., Sun, Y.H., Xiao, Y.W.: Stochastic bifurcations in the nonlinear vibroimpact system with fractional derivative under random excitation. Commun. Nonlinear Sci. Numer. Simulat. 42, 62–72 (2017)

    MathSciNet  ADS  Google Scholar 

  42. Li, L.X., Liang, Y., Chen, G.H., Yang, D.X.: Simultaneous layout and size optimization of nonlinear viscous dampers for frame buildings under stochastic seismic excitation. Eng. Struct. 273, 115067 (2022)

    Google Scholar 

  43. Chen, H.S., Zhao, J., Meng, Z., Chen, G.H., Yang, D.X.: Stochastic dynamic analysis of nonlinear MDOF systems with chaotic motion under combined additive and multiplicative excitation. Commun. Nonlinear Sci. Numer. Simul. 118, 107034 (2023)

    MathSciNet  Google Scholar 

  44. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    Google Scholar 

  45. Wang, L., Xue, L.L., Sun, C.Y., Yue, X.L., Xu, W.: The response analysis of fractional-order stochastic system via generalized cell mapping method. Chaos 28, 013118 (2018)

    MathSciNet  ADS  PubMed  Google Scholar 

  46. Agrawal, O.P.: Generalized multiparameters fractional variational calculus. Int. J. Differ. Equat. 2, 1–38 (2012)

    MathSciNet  Google Scholar 

  47. Balkwill, J.: Performance Vehicle Dynamics: Engineering and Applications. Oxford University Press, London (2017)

    Google Scholar 

  48. Hu, F., Zhu, W.Q.: Stabilization of quasi integrable hamiltonian systems with fractional derivative damping by using fractional optimal control. IEEE T. Automat. Contr. 58(11), 2968–2973 (2013)

    MathSciNet  Google Scholar 

  49. Chen, L.C., Zhu, W.Q.: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. Int. J. Nonlin. Mech. 46(10), 1324–1329 (2011)

    Google Scholar 

  50. Liu, Z.J., Liu, W., Peng, Y.B.: Random function based spectral representation of stationary and non-stationary stochastic processes. Probabilist. Eng. Mech. 45, 115–126 (2016)

    Google Scholar 

  51. Shen, Y., Yang, S., Xing, H., Ma, H.: Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives. Int. J. Nonlin. Mech. 47(9), 975–983 (2012)

    Google Scholar 

  52. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling. Analysis and Simulation. Springer, Berlin (2011)

    Google Scholar 

  53. Chen, H.S., Chen, G.H., Meng, Z., Zhang, Y.H., Yang, D.X.: Stochastic dynamic analysis of nonlinear MDOF systems under combined Gaussian and Poisson noise excitation based on DPIM. Mech. Syst. Signal. Pr. 176, 109163 (2022)

    Google Scholar 

  54. Chen, G.H., Yang, D.X.: A unified analysis framework of static and dynamic structural reliabilities based on direct probability integral method. Mech. Syst. Signal. Pr. 158, 107783 (2021)

    Google Scholar 

  55. Tao, T.Z., Zhao, G.Z., Yu, Y., Huang, B.W., Zheng, H.: A fully adaptive method for structural stochastic response analysis based on direct probability integral method. Comput. Meth. Appl. Mech. Eng. 396, 115066 (2022)

    MathSciNet  ADS  Google Scholar 

  56. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via Diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    MathSciNet  Google Scholar 

  57. Keshtegar, B., Kolahchi, R., Correia, J.A.F.O., Fantuzzi, N., Mirabimoghaddam, M.H.: Reliability analysis of composite-nanofluid tube using finite-based armijo method. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A Civ. Eng. 7(4), 04021057 (2021)

    Google Scholar 

  58. Valdebenito, M.A., Jensen, H.A., Labarca, A.A.: Estimation of first excursion probabilities for uncertain stochastic linear systems subject to Gaussian load. Comput. Struct. 138, 36–48 (2014)

    Google Scholar 

  59. Oumbé Tékam, G.T., Kitio Kwuimy, C.A., Woafo, P.: Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos 25(1), 013112 (2015)

    MathSciNet  ADS  PubMed  Google Scholar 

  60. Leung, A.Y.T., Guo, Z.J.: Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping. Commun. Nonlinear Sci. Numer. Simulat. 16, 2169–2183 (2011)

    MathSciNet  ADS  Google Scholar 

  61. Gao, R.F., Li, J., Ang, A.H.S.: Stochastic analysis of fatigue of concrete bridges. Struct. Infrastruct. Eng. 15(7), 925–939 (2019)

    Google Scholar 

  62. Tchakui, M.V., Woafo, P., Skokos, C.: Chaotic dynamics of piezoelectric mems based on maximum Lyapunov exponent and smaller alignment index computations. Int. J. Bifurcat. Chaos 30(9), 2030025 (2020)

    MathSciNet  Google Scholar 

  63. Risaliti, E., Tamarozzi, T., Vermaut, M., Cornelis, B., Desmet, W.: Multibody model based estimation of multiple loads and strain field on a vehicle suspension system. Mech. Syst. Signal Pr. 123, 1–25 (2019)

    Google Scholar 

  64. Sun, X.J., Zhang, H., Meng, W.J., Zhang, R.H., Li, K.N., Peng, T.: Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers. Nonlinear Dyn. 94, 1243–1265 (2018)

    Google Scholar 

  65. Jeyasenthil, R., Yoon, D.S., Choi, S.B., Kim, G.W.: Robust semiactive control of a half-car vehicle suspension system with magnetorheological dampers: quantitative feedback theory approach with dynamic decoupler. Int. J. Robust. Nonlin. 31, 1418–1435 (2021)

    Google Scholar 

  66. Schiehlen, W.: White noise excitation of road vehicle structures. Sadhana 31(4), 487–503 (2006)

    Google Scholar 

  67. Ministry of Industry and Information Technology of the People’s Republic of China. QC/T 491–2018, Automobile shock absorber technique requirements and test methods. Science and Technology Literature Publishing House, Beijing (2019)

  68. Liu, J., Li, J.Y., Wang, K., Zhou, J.Y., Cong, H.Z., He, P.: Exploring factors affecting the severity of night-time vehicle accidents under low illumination conditions. Adv. Mech. Eng. 11(4), 168781401984094 (2019)

    Google Scholar 

  69. Toroyan, T.: Global status report on road safety 2013: supporting a decade of action. Injury. Prev. 15(4), 286 (2013)

    Google Scholar 

  70. Long, X.Y., Elishakoff, I., Jiang, C., Han, X., Hashemi, J.: Notes on random vibration of a vehicle model and other discrete systems possessing repeated natural frequencies. Arch. Appl. Mech. 84(8), 1091–1101 (2014)

    ADS  Google Scholar 

  71. Zhang, Z.S., Dhanasekar, M., Ling, L., Thambiratnam, D.P.: Effectiveness of a raised road: rail crossing for the safety of road vehicle occupants. Eng. Fail. Anal. 97, 258–273 (2019)

    Google Scholar 

  72. International Organization for Standardization. ISO 2631–1–1997/Amd.1: 2010(E), Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration-Part 1: General Requirements-Amendment 1. Geneva, Switzerland (2010)

  73. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 4970–2009, Method of Running Test-Automotive Ride Comfort. China Standards Press, Beijing (2009)

Download references

Funding

The supports of the National Natural Science Foundation of China (Grant Nos. 12032008, 12102080), National Key R&D Program of China (Grant No. 2020YFB1709401) and Jiangsu Provincial Excellent Postdoctoral Program (Grant No. 2023ZB506) are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dixiong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chen, G., Meng, Z. et al. Stochastic bifurcation and dynamic reliability analyses of nonlinear MDOF vehicle system with generalized fractional damping via DPIM. Nonlinear Dyn 112, 5291–5316 (2024). https://doi.org/10.1007/s11071-024-09313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09313-4

Keywords

Navigation