Skip to main content
Log in

Nonlinear vibration control of composite beam under base excitation via NiTiNOL–steel wire ropes: experimental and theoretical investigation

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present paper contributes to the nonlinear vibration control of the composite cantilever beam structures of aeroplanes under base excitation via employment the NiTiNOL–steel wire ropes (NiTi–ST) by means of systematic theoretical and experimental investigations. A polynomial model is introduced to simulate the damping characteristic of NiTi–ST and then the governing equation of motion of laminated composite cantilever beam treated with NiTi–ST has been derived in frame of Hamilton’s principle. The Galerkin Truncation method is employed to discretize the partial differential equations of the system while the frequency response curves are computed with the Harmonic balance method. A series of systematic experimental and numerical research projects are put on schedule to confirm the effectiveness of the proposed analytical procedure and the damping of NiTi–ST. The influence of NiTi–ST on vibration response of the composite beam with various excitations and composite schemes are discussed in detail and several new conclusions are drawn. The results indicate that NiTi–ST is a lightweight and effective method of vibration damping without changing the natural frequency of the construction, providing a new solution for vibration damping in aerospace composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Hale, D.: The physical properties of composite materials. J. Mater. Sci. 11, 2105–2141 (1976)

    Article  ADS  CAS  Google Scholar 

  2. Chen, Y., Ma, Y., Yin, Q., Pan, F., Cui, C., Zhang, Z., Liu, B.: Advances in mechanics of hierarchical composite materials. Compos. Sci. Technol. 214, 108970 (2021)

    Article  Google Scholar 

  3. Al-Furjan, M., Shan, L., Shen, X., Zarei, M., Hajmohammad, M., Kolahchi, R.: A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar fiber reinforced rolymer composites. J. Market. Res. 19, 2930–2959 (2022)

    CAS  Google Scholar 

  4. Fereiduni, E., Ghasemi, A., Elbestawi, M.: Selective laser melting of aluminum and titanium matrix composites: recent progress and potential applications in the aerospace industry. Aerospace 7, 77 (2020)

    Article  Google Scholar 

  5. Li, F., Liu, Y., Leng, J.: Progress of shape memory polymers and their composites in aerospace applications. Smart Mater. Struct. 28, 103003 (2019)

    Article  ADS  CAS  Google Scholar 

  6. Viglietti, A., Zappino, E., Carrera, E.: Free vibration analysis of locally damaged aerospace tapered composite structures using component-wise models. Compos. Struct. 192, 38–51 (2018)

    Article  Google Scholar 

  7. Ali, H.Q., Yilmaz, Ç., Yildiz, M.: The effect of different tabbing methods on the damage progression and failure of carbon fiber reinforced composite material under tensile loading. Polym. Testing 111, 107612 (2022)

    Article  CAS  Google Scholar 

  8. Kahya, V., Şimşek, S., Toğan, V.: Vibration-based damage detection in anisotropic laminated composite beams by a shear-deformable finite element and harmony search optimization. Struct. Multidiscip. Optim. 65, 181 (2022)

    Article  MathSciNet  Google Scholar 

  9. Kharrat, M., Placet, V., Ramasso, E., Boubakar, M.: Influence of damage accumulation under fatigue loading on the AE-based health assessment of composite materials: wave distortion and AE-features evolution as a function of damage level. Compos. A Appl. Sci. Manuf. 109, 615–627 (2018)

    Article  CAS  Google Scholar 

  10. Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Article  ADS  Google Scholar 

  11. Xu, K., Zhang, Y., Zhu, Y., Zang, J., Chen, L.: Dynamics analysis of active variable stiffness vibration isolator for whole-spacecraft systems based on nonlinear output frequency response functions. Acta Mech. Solida Sin. 33, 731–743 (2020)

    Article  CAS  Google Scholar 

  12. Mousavi, S.H.: Modeling and controlling a semi-active nonlinear single-stage vibration isolator using intelligent inverse model of an MR damper. J. Mech. Sci. Technol. 34, 3525–3532 (2020)

    Article  Google Scholar 

  13. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  ADS  Google Scholar 

  14. Yuan, S., Sun, Y., Zhao, J., Meng, K., Wang, M., Pu, H., Peng, Y., Luo, J., Xie, S.: A tunable quasi-zero stiffness isolator based on a linear electromagnetic spring. J. Sound Vib. 482, 115449 (2020)

    Article  Google Scholar 

  15. Li, F., Yuan, S., Qian, F., Wu, Z., Pu, H., Wang, M., Ding, J., Sun, Y.: Adaptive deterministic vibration control of a piezo-actuated active–passive isolation structure. Appl. Sci. 11, 3338 (2021)

    Article  CAS  Google Scholar 

  16. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68, 42–48 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Al-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10, 014502 (2015)

    Article  Google Scholar 

  19. Yang, K., Zhang, Y., Ding, H., Yang, T., Li, Y., Chen, L.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. 139, 021011 (2017)

    Article  Google Scholar 

  20. Zhang, Y., Lu, Y., Zhang, W., Teng, Y., Yang, H., Yang, T., Chen, L.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52–64 (2019)

    Article  ADS  Google Scholar 

  21. Zang, J., Yuan, T., Lu, Z., Zhang, Y., Ding, H., Chen, L.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018)

    Article  ADS  Google Scholar 

  22. Ding, H., Chen, L.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020)

    Article  Google Scholar 

  23. Zhang, Y., Zhang, H., Hou, S., Xu, K., Chen, L.: Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronaut. 123, 109–115 (2016)

    Article  ADS  Google Scholar 

  24. Gao, S., Feng, Y., Wang, J., Qin, M., Bodunde, O.P., Liao, W., Guo, P.: Molten pool characteristics of a nickel-titanium shape memory alloy for directed energy deposition. Opt. Laser Technol. 142, 107215 (2021)

    Article  CAS  Google Scholar 

  25. Gao, S., Weng, F., Bodunde, O.P., Qin, M., Liao, W., Guo, P.: Spatial characteristics of nickel-titanium shape memory alloy fabricated by continuous directed energy deposition. J. Manuf. Process. 71, 417–428 (2021)

    Article  Google Scholar 

  26. Carboni, B., Lacarbonara, W., Auricchio, F.: Hysteresis of multiconfiguration assemblies of nitinol and steel strands: experiments and phenomenological identification. J. Eng. Mech. 141, 04014135 (2015)

    Article  Google Scholar 

  27. Carboni, B., Lacarbonara, W.: Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dyn. 83, 23–39 (2016)

    Article  Google Scholar 

  28. Carboni, B., Lacarbonara, W.: Nonlinear vibration absorber with pinched hysteresis: theory and experiments. J. Eng. Mech. 142, 04016023 (2016)

    Article  Google Scholar 

  29. Zhang, Y., Xu, K., Zang, J., Ni, Z., Zhu, Y., Chen, L.: Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions. Appl. Math. Mech. 40, 1791–1804 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zheng, L., Zhang, Y., Ding, H., Chen, L.: Nonlinear vibration suppression of composite laminated beam embedded with NiTiNOL-steel wire ropes. Nonlinear Dyn. 103, 2391–2407 (2021)

    Article  Google Scholar 

  31. De Domenico, D., Quaranta, G., Ricciardi, G., Lacarbonara, W.: Optimum design of tuned mass damper with pinched hysteresis under nonstationary stochastic seismic ground motion. Mech. Syst. Signal Process. 170, 108745 (2022)

    Article  Google Scholar 

  32. Zhang, Y., Chen, X., Li, D., Zang, J.: Aeroelastic properties and nonlinear vibration control of a simply-supported lattice sandwich beam embedded with Nitinol-steel wire ropes. Acta Mech. Solida Sin. 35, 755–764 (2022)

    Article  Google Scholar 

  33. Zang, J., Liu, P., Zhang, Y., Chen, L.: The performance of nonlinear vibration control via NiTiNOL–Steel wire ropes. Commun. Nonlinear Sci. Numer. Simul. 118, 107058 (2023)

    Article  MathSciNet  Google Scholar 

  34. Xue, J., Zhang, Y., Niu, M., Chen, L.: Vibration reduction in a composite laminated cylindrical shell via embedded NiTiNOL-steel wire ropes. Nonlinear Dyn. 111, 7181–7197 (2023)

    Article  Google Scholar 

  35. Song, X., Wang, C., Wang, S., Zhang, Y.: Vibration evolution of laminated composite conical shell with arbitrary foundation in hygrothermal environment: experimental and theoretical investigation. Mech. Syst. Signal Process. 200, 110565 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant Nos. U23A2066, 12022213, 12002329 and 12272240)

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YZ Supervision, Conceptualization. ZW Formal analysis, Methodology, Writing–original draft. XS Data curation, Investigation, Supervision. JZ Investigation, Writing–original draft. ZW Data curation.

Corresponding authors

Correspondence to Yewei Zhang or Xuyuan Song.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Z., Song, X. et al. Nonlinear vibration control of composite beam under base excitation via NiTiNOL–steel wire ropes: experimental and theoretical investigation. Nonlinear Dyn 112, 5195–5210 (2024). https://doi.org/10.1007/s11071-024-09312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09312-5

Keywords

Navigation