Skip to main content
Log in

Spatial vegetation pattern formation and transition of an extended water–plant model with nonlocal or local grazing

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we analyze how vegetation patterns occur in arid and semi-arid ecosystems with different types of grazing, using both modelling approaches and mathematical analysis. The concepts of Tipping point and Turing point are helpful for us to understand the desertification that catastrophic and critical transitions may have on ecosystems. In the mathematical analysis, we extrapolated our analysis to local stability and Turing instability of local and nonlocal models. We found that the uniform vegetation state changes to vegetation pattern state or bare soil state, which means that there is overgrazing in this ecosystem. Therefore, we propose that vegetation patterns may be a warning signal for the onset of desertification. Some notes on numerical simulation are given, based on different diffusion coefficients, infiltration parameters and grazing rate. Numerical simulation not only verifies the validity of the theoretical results, but also obtains some results which can not be obtained in mathematical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Some or all data, models, or code generated or used during the study are available from the corresponding author by request

References

  1. Scanlon, T.M., Caylor, K.K., Levin, S.A.: Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449(7159), 209–212 (2007)

    ADS  CAS  PubMed  Google Scholar 

  2. Kefi, S., Rietkerk, M., Alados, C.L.: Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449(7159), 213–217 (2007)

    ADS  CAS  PubMed  Google Scholar 

  3. Rietkerk, M., Bastiaansen, R., Banerjee, S.: Evasion of tipping in complex systems through spatial pattern formation. Science 374(6564), eabj0359 (2021)

    CAS  PubMed  Google Scholar 

  4. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)

    CAS  PubMed  Google Scholar 

  5. Hillerislambers, R., Rietkerk, M., Bosch, F.V.D., Prins, H.H.T., Kroon, A.H.: Vegetation pattern formation in semi-arid grazing systems. Ecology 82(1), 50–61 (2001)

    Google Scholar 

  6. Rietkerk, M., Boerlijst, M.C., Langevelde, F.V., et al.: Self-organization of vegetation in arid ecosystems. Am. Nat. 160(4), 524–530 (2002)

    PubMed  Google Scholar 

  7. Scheffer, M., Carpenter, S., Foley, J.A., et al.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)

    ADS  CAS  PubMed  Google Scholar 

  8. Rietkerk, M., Dekker, S.C., Ruiter, P.C., Koppel, J.V.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)

    ADS  CAS  PubMed  Google Scholar 

  9. Scheffer, M., Bascompte, J., Brock, W.A.: Early-warning signals for critical transitions. Nature 461(7260), 53–59 (2009)

    ADS  CAS  PubMed  Google Scholar 

  10. Gilad, E., Hardenberg, J.V., Provenzale, A.: A mathematical model of plants as ecosystem engineers. J. Theor. Biol. 244(4), 680–691 (2007)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  11. Paine, C.E.T., Marthews, T.R., Vogt, D.R.: How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol. Evol. 3(2), 245–256 (2012)

    Google Scholar 

  12. Kefi, S., Rietkerk, M., Katul, G.: Vegetation pattern shift as a result of rising atmospheric CO\(_2\) in arid ecosystems. Theor. Popul. Biol. 74(4), 332–344 (2008)

    PubMed  Google Scholar 

  13. Yin, H., Chen, X., Wang, L.: On a cross-diffusion system modeling vegetation spots and strips in a semi-arid or arid landscape. Nonlinear Anal. 159, 482–491 (2017)

    MathSciNet  Google Scholar 

  14. Siero, E.: Nonlocal grazing in patterned ecosystems. J. Theor. Biol. 436(7), 64–71 (2018)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  15. Maimaiti, Y., Yang, W.B., Wu, J.H.: Spatiotemporal dynamic analysis of an extended water-plant model with power exponent plant growth and nonlocal plant loss. Commun. Nonlinear Sci. Numer. Simul. 103, 105985 (2021)

    MathSciNet  Google Scholar 

  16. Maimaiti, Y., Yang, W.B., Wu, J.H.: Turing instability and coexistence in an extended Klausmeier model with nonlocal grazing. Nonlinear Anal. Real World Appl. 64, 103443 (2022)

    MathSciNet  Google Scholar 

  17. Shnerb, N.M., Sarah, P., Lavee, N.M., Solomon, S.: Reactive glass and vegetation patterns. Phys. Rev. Lett. 90, 038101 (2003)

    ADS  CAS  PubMed  Google Scholar 

  18. Franklin, O., Harrison, S.P., Dewar, R., et al.: Organizing principles for vegetation dynamics. Nat. Plants 6(5), 444–453 (2020)

    PubMed  Google Scholar 

  19. Kefi, S., Rietkerk, M., Katul, G.: Vegetation pattern shift as a result of rising atmospheric CO\(_2\) in arid ecosystems. Theor. Popul. Biol. 74(4), 332–344 (2008)

    PubMed  Google Scholar 

  20. Ursino, N.: Modeling banded vegetation patterns in semiarid regions: interdependence between biomass growth rate and relevant hydrological processes. Water Resour. Res. 43, 1–9 (2007)

    Google Scholar 

  21. Pueyo, Y., Kefi, S., Alados, C.L., Rietkerk, M.: Dispersal strategies and spatial organization of vegetation in arid ecosystems. Oikos 117(10), 1522–1532 (2008)

    ADS  Google Scholar 

  22. Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments I. Nonlinearity 23(10), 2657 (2010)

    ADS  MathSciNet  Google Scholar 

  23. Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments IV: slowly moving patterns and their stability. SIAM J. Appl. Math. 73(1), 330–350 (2013)

    MathSciNet  Google Scholar 

  24. Carter, P., Doelman, A.: Traveling stripes in the Klausmeier model of vegetation pattern formation. SIAM J. Appl. Math. 78(6), 3213–3237 (2018)

    MathSciNet  Google Scholar 

  25. Hardenberg, J.V., Meron, E., Shachak, M., Zarmi, Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87(19), 549–553 (2001)

    Google Scholar 

  26. Sherratt, J.A., Synodinos, A.D.: Vegetation patterns and desertification waves in semi-arid environments: mathematical models based on local facilitation in plants. Discrete Contin. Dyn. Syst. Ser. B 17(8), 2815–2827 (2012)

    MathSciNet  Google Scholar 

  27. Djilali, S., Bentout, S., Ghanbari, B.: Spatial patterns in a vegetation model with internal competition and feedback regulation. Eur. Phys. J. Plus 136(2), 1–24 (2021)

    Google Scholar 

  28. Zhang, F.F., Zhang, H.Y., Evans, M.R., et al.: Vegetation patterns generated by a wind driven sand-vegetation system in arid and semi-arid areas. Ecol. Complex. 31, 21–33 (2017)

    CAS  Google Scholar 

  29. Zhang, F.F., Zhang, H.Y., Huang, T.S., et al.: Coupled effects of Turing and Neimark–Sacker bifurcations on vegetation pattern self-organization in a discrete vegetation-sand model. Entropy 19(9), 478 (2017)

    ADS  Google Scholar 

  30. Zhang, F.F., Li, Y.X., Zhao, Y.L.: Vegetation pattern formation and transition caused by cross-diffusion in a modified vegetation-sand model. Int. J. Bifurcat. Chaos 32(05), 2250069 (2022)

    MathSciNet  Google Scholar 

  31. Liu, Q.X., Jin, Z., Li, B.L.: Numerical investigation of spatial pattern in a vegetation model with feedback function. J. Theor. Biol. 254(2), 350–360 (2008)

    ADS  MathSciNet  PubMed  Google Scholar 

  32. Yin, M.H., Chen, X.F., Wang, L.H.: On a cross-diffusion system modeling vegetation spots and strips in a semi-arid or arid landscape. Nonlinear Anal. 159, 482–491 (2017)

    MathSciNet  Google Scholar 

  33. Xiong, Z.X., Zhang, Q.M., Kang, T.: Bifurcation and stability analysis of a cross-diffusion vegetation–water model with mixed delays. Math. Methods Appl. Sci. 44(13), 9976–9986 (2021)

    ADS  MathSciNet  Google Scholar 

  34. Manor, A., Shnerb, N.M.: Dynamical failure of Turing patterns. Europhys. Lett. 74, 837–843 (2006)

    ADS  MathSciNet  CAS  Google Scholar 

  35. Wang, X.L., Wang, W.W., Zhang, G.H.: Vegetation pattern formation of a water-biomass model. Commun. Nonlinear Sci. Numer. Simul. 42, 571–584 (2017)

    ADS  MathSciNet  Google Scholar 

  36. Lei, C.X., Zhang, G.H., Zhou, J.L.: Pattern formation of a biomass–water reaction–diffusion model. Appl. Math. Lett. 123, 107605 (2022)

    MathSciNet  Google Scholar 

  37. Liu, S., Li, W., Qiao, W., et al.: Effect of natural conditions and mining activities on vegetation variations in arid and semiarid mining regions. Ecol. Indic. 103, 331–345 (2019)

    Google Scholar 

  38. Shi, J.P., Xie, Z.F., Little, K.: Cross-diffusion induced instability and stability in reaction–diffusion systems. J. Appl. Anal. Comput. 1(1), 95–119 (2011)

    MathSciNet  Google Scholar 

  39. Yang, X.Y., Liu, T.Q., Zhang, J.J.: The mechanism of Turing pattern formation in a positive feedback system with cross diffusion. J. Stat. Mech. Theory Exp. 2014(3), P03005 (2014)

    Google Scholar 

  40. Guo, G.H., Zhao, S.H., Wang, J.J., et al.: Positive steady-state solutions for a water–vegetation model with the infiltration feedback effect. Discrete Contin. Dyn. Syst. Ser. B 29, 104008 (2023)

    MathSciNet  Google Scholar 

  41. Marinov, K., Wang, T., Yang, Y.: On a vegetation pattern formation model governed by a nonlinear parabolic system. Nonlinear Anal. Real World Appl. 14(1), 507–525 (2013)

    MathSciNet  Google Scholar 

  42. Vanag, V.K., Epstein, I.R.: Cross-diffusion and pattern formation in reaction–diffusion systems. Phys. Chem. Chem. Phys. 11(6), 897–912 (2009)

    CAS  PubMed  Google Scholar 

  43. Jiang, W.H., Cao, X., Wang, C.C.: Turing instability and pattern formations for reaction–diffusion systems on 2D bounded domain. Discrete Contin. Dyn. Syst. Ser. B 27(2), 1163 (2022)

    MathSciNet  Google Scholar 

  44. Liang, J., Liu, C., Sun, G.Q.: Nonlocal interactions between vegetation induce spatial patterning. Appl. Math. Comput. 428, 127061 (2022)

  45. Ghorai, S., Poria, S.: Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity. Chaos Solitons Fract. 91, 421–429 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimamu Maimaiti.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region (Nos. 2023D01C166), National Natural Science Foundation of China (Nos. 12301639, 12001425, 12171296), Talent Project of Tianchi Doctoral Program in Xinjiang Uygur Autonomous Region (No. 51052300524) and Natural Science Basic Research Program of Shaanxi (No. 2023-JC-YB-066).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maimaiti, Y., Yang, W. Spatial vegetation pattern formation and transition of an extended water–plant model with nonlocal or local grazing. Nonlinear Dyn 112, 5765–5791 (2024). https://doi.org/10.1007/s11071-024-09299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09299-z

Keywords

Navigation