Skip to main content
Log in

A novel circuit based on memristor-memcapacitor with extreme multistability

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel chaotic circuit is built with a memristor and a memcapacitor. The equivalent circuits of the memristor and the memcapacitor are given. The system model is obtained by dimensionless processing. The stability of the equilibrium point and the influence of the two parameters on the dynamical characteristics are discussed. In addition, special phenomena such as chaotic degeneration and extreme multistability are also found in the system. Finally, the phase diagram of the system is implemented by circuit simulation and DSP hardware platform respectively. The research results can be used as a reference when chaotic systems are applied in the field of engineering and secure communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  2. Sun, K., Chen, J., Yan, X.: The future of memristors: materials engineering and neural networks. Adv. Func. Mater. 31(8), 2006773 (2021)

    CAS  Google Scholar 

  3. Lin, H., Wang, C., Hong, Q., Sun, Y.: A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3472–3476 (2020)

    Google Scholar 

  4. Ma, T., Mou, J., Yan, H., Cao, Y.: A new class of Hopfield neural network with double memristive synapses and its DSP implementation. Eur. Phys. J. Plus. 137(10), 1–19 (2022)

    Google Scholar 

  5. Yang, F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos Interdiscip. J. Nonlinear Sci. 33(2), 023110 (2023)

    MathSciNet  Google Scholar 

  6. Faruque, K.A., Biswas, B.R., Rashid, A.H.-U.: Memristor-based low-power high-speed nonvolatile hybrid memory array design. Circuits Syst. Signal Process. 36, 3585–3597 (2017)

    Google Scholar 

  7. Pan, L., et al.: Metal-organic framework nanofilm for mechanically flexible information storage applications. Adv. Func. Mater. 25(18), 2677–2685 (2015)

    CAS  Google Scholar 

  8. Li, C., Li, H., Xie, W., Du, J.: A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit. Nonlinear Dyn. 106(1), 1041–1058 (2021)

    Google Scholar 

  9. Zhou, L., Wang, C., Zhou, L.: A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor. Int. J. Circuit Theory Appl. 46(1), 84–98 (2018)

    Google Scholar 

  10. Minati, L., Gambuzza, L., Thio, W., Sprott, J., Frasca, M.: A chaotic circuit based on a physical memristor. Chaos Solitons Fractals 138, 109990 (2020)

    MathSciNet  Google Scholar 

  11. Han, X., Mou, J., Lu, J., Banerjee, S., Cao, Y.: Two discrete memristive chaotic maps and its DSP implementation. Fractals 31(6), 2340104 (2023)

    ADS  Google Scholar 

  12. Liu, X., Mou, J., Zhang, Y., Cao, Y.: A new hyperchaotic map based on discrete memristor and meminductor: dynamics analysis, encryption application, and DSP implementation. IEEE Trans. Indus. Electron. (2023). https://doi.org/10.1109/TIE.2023.3281687

    Article  Google Scholar 

  13. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Google Scholar 

  14. Taşkíran, Z.G.Ç., Saǧbaş, M., Ayten, U.E., Sedef, H.: A new universal mutator circuit for memcapacitor and meminductor elements. AEU Int. J. Electron. Commun. 119, 153180 (2020)

    Google Scholar 

  15. Sánchez-López, C., Mendoza-Lopez, J., Carrasco-Aguilar, M., Muñiz-Montero, C.: A floating analog memristor emulator circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(5), 309–313 (2014)

    Google Scholar 

  16. Zhao, Q., Wang, C., Zhang, X.: A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013141 (2019)

    MathSciNet  Google Scholar 

  17. Guo, M., Yang, R., Zhang, M., Liu, R., Zhu, Y., Dou, G.: A novel memcapacitor and its application in a chaotic circuit. Nonlinear Dyn. 105, 877–886 (2021)

    Google Scholar 

  18. Chen, M., Ren, X., Wu, H., Xu, Q., Bao, B.: Interpreting initial offset boosting via reconstitution in integral domain. Chaos Solitons Fractal 131, 109544 (2020)

    MathSciNet  Google Scholar 

  19. Bao, B., Xu, J., Zhou, G., Ma, Z., Zou, L.: Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 120502 (2011)

    ADS  Google Scholar 

  20. Bao, B., Wu, P., Bao, H., Chen, M., Xu, Q.: Chaotic bursting in memristive diode bridge-coupled Sallen-Key lowpass filter. Electron. Lett. 53(16), 1104–1105 (2017)

    ADS  Google Scholar 

  21. Yuan, F., Li, Y., Wang, G., Dou, G., Chen, G.: Complex dynamics in a memcapacitor-based circuit. Entropy 21(2), 188 (2019)

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  22. Zhou, W., Wang, G., Iu, H., Shen, Y., Liang, Y.: Complex dynamics of a non-volatile memcapacitor-aided hyperchaotic oscillator. Nonlinear Dyn. 100, 3937–3957 (2020)

    Google Scholar 

  23. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    ADS  MathSciNet  Google Scholar 

  24. Meng, X., Rozycki, P., Qiao, J.-F., Wilamowski, B.M.: Nonlinear system modeling using RBF networks for industrial application. IEEE Trans. Indus. Inf. 14(3), 931–940 (2018)

    Google Scholar 

  25. Ma, T., Mou, J., Li, B., Banerjee, S., Yan, H.: Study on the complex dynamical behavior of the fractional-order Hopfield neural network system and its implementation. Fractal Fractional 6(11), 637 (2022)

    Google Scholar 

  26. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifur. Chaos 18(11), 3183–3206 (2008)

    MathSciNet  Google Scholar 

  27. Ren, L., Mou, J., Banerjee, S., Zhang, Y.: A hyperchaotic map with a new discrete memristor model: design, dynamical analysis, implementation and application. Chaos Solitons Fractals 167, 113024 (2023)

    MathSciNet  Google Scholar 

  28. Liu, X., Mou, J., Wang, J., Banerjee, S., Li, P.: Dynamical analysis of a novel fractional-order chaotic system based on memcapacitor and meminductor. Fractal Fractional 6(11), 671 (2022)

    Google Scholar 

  29. Ma, Y., Mou, J., Lu, J., Banerjee, S., Cao, Y.: A discrete memristor coupled two-dimensional generalized square hyperchaotic maps. Fractals 31(6), 2340136 (2023)

    ADS  Google Scholar 

  30. Wang, X., Cao, Y., Li, H., Li, B.: A chaos-enhanced fractional-order chaotic system with self-reproduction based on a memcapacitor and meminductor. Fractal Fractional 7(8), 582 (2023)

    Google Scholar 

  31. Peng, Y., Sun, K., He, S.: A discrete memristor model and its application in Hénon map. Chaos Solitons Fractals 137, 109873 (2020)

    MathSciNet  Google Scholar 

  32. Qi, A., Ding, L., Liu, W.: A meminductor-based chaotic system. Inf. Technol. Control 49(2), 317–332 (2020)

    Google Scholar 

  33. Li, C., Yang, Y., Du, J., Chen, Z.: A simple chaotic circuit with magnetic flux-controlled memristor. Eur. Phys. J. Special Top. 230(7), 1723–1736 (2021)

    ADS  Google Scholar 

  34. Lin, H., Wang, C., Cui, L., Sun, Y., Zhang, X., Yao, W.: Hyperchaotic memristive ring neural network and application in medical image encryption. Nonlinear Dyn. 110(1), 841–855 (2022)

    Google Scholar 

  35. Sha, Y., Mou, J., Banerjee, S., Zhang, Y.: Exploiting flexible and secure cryptographic technique for multi-dimensional image based on graph data structure and three-input majority gate. IEEE Trans. Ind. Inf. (2023). https://doi.org/10.1109/TII.2023.3281659

    Article  Google Scholar 

  36. Gao, X., Mou, J., Banerjee, S., Zhang, Y.: Color-gray multi-image hybrid compression-encryption scheme based on BP neural network and knight tour. IEEE Trans. Cybern. 53(8), 5037–5047 (2023)

    PubMed  Google Scholar 

  37. Sha, Y., Mou, J., Wang, J., Banerjee, S., Sun, B.: Chaotic image encryption with Hopfield neural network. Fractals 31(6), 2340107 (2023)

  38. Gao, X., Mou, J., Li, B., Banerjee, S., Sun, B.: Multi-image hybrid encryption algorithm based on pixel substitution and gene theory. Fractals 31(6), 2340111 (2023)

    ADS  Google Scholar 

  39. Timofejeva, I., Poskuviene, K., Cao, M., Ragulskis, M.: Synchronization measure based on a geometric approach to attractor embedding using finite observation windows. Complexity 2018, 1–16 (2018)

    Google Scholar 

  40. Kengne, J., Tabekoueng, N.Z., Tamba, K.V., Negou, N.A.: Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos Interdiscip. J. Nonlinear Sci. 25(10), 103126 (2015)

    MathSciNet  CAS  Google Scholar 

  41. Mantovani, M., Armour, A.D., Belzig, W., Rastelli, G.: Dynamical multistability in a quantum-dot laser. Phys. Rev. B 99(4), 045442 (2019)

    ADS  CAS  Google Scholar 

  42. Chang, H., Li, Y., Chen, G., Yuan, F.: Extreme multistability and complex dynamics of a memristor-based chaotic system. Int. J. Bifur. Chaos 30(08), 2030019 (2020)

    MathSciNet  Google Scholar 

  43. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020)

    Google Scholar 

  44. Wang, N., Li, C., Bao, H., Chen, M., Bao, B.: Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode. IEEE Trans. Circuits Syst. I Regul. Pap. 66(12), 4767–4779 (2019)

    Google Scholar 

  45. Lai, Q., Kuate, K.P.D., Liu, F., Iu, H.H.-C.: An extremely simple chaotic system with infinitely many coexisting attractors. IEEE Trans. Circuits Syst. II Express Briefs 67(6), 1129–1133 (2020)

    Google Scholar 

  46. Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Control of multistability in hidden attractors. Eur. Phys. J. Special Top. 224(8), 1485–1491 (2015)

    ADS  Google Scholar 

  47. Shimada, I., Nagashima, T.: A numerical approach to ergodic problem of dissipative dynamical systems. Prog. Theoret. Phys. 61(6), 1605–1616 (1979)

    ADS  MathSciNet  Google Scholar 

  48. Bao, B., Jiang, T., Wang, G., Jin, P., Bao, H., Chen, M.: Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89(2), 1157–1171 (2017)

    Google Scholar 

  49. Sun, K.-H., He, S.-B., He, Y., Yin, L.-Z.: Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm. Acta Phys. Sin. 62(1), 27–34 (2013)

    Google Scholar 

Download references

Funding

This research work was funded by Institutional Fund Projects under Grant No. (IFPIP: 597-611-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

ZH designed and carried out experiments, data analyzed and manuscript wrote. AAA-B and HJ made the theoretical guidance for this paper. JM improved the algorithm. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Mou.

Ethics declarations

Conflict of interest

No conflicts of interests about the publication by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Al-Barakati, A.A., Jahanshahi, H. et al. A novel circuit based on memristor-memcapacitor with extreme multistability. Nonlinear Dyn 112, 4863–4877 (2024). https://doi.org/10.1007/s11071-024-09286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09286-4

Keywords

Navigation