Skip to main content
Log in

A deep learning method for computing mean exit time excited by weak Gaussian noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Exit events induced by noise from the attracting domain containing a stable fixed point are ubiquitous phenomena in physical systems, wherein mean exit time is an important quantity which has been widely used in engineering, physical, chemical and biological fields. In this work, we devise a deep learning method to compute the mean exit time for dynamical systems excited by weak Gaussian noise. More specifically, we first derive a complete group of ordinary differential equations governing the most probable path, the quasipotential, and the prefactor along the path via WKB approximation. Then a neural network architechture is proposed to solve it in terms of automatic differentiation. The results of numerical experiments show the effectiveness and accuracy of the algorithm and imply its potential applications to discover the mechanisms of rare events triggered by random fluctuations in practical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Grafke, T., Vanden-Eijnden, E.: Numerical computation of rare events via large deviation theory. Chaos 29(6), 063118 (2019)

    ADS  MathSciNet  PubMed  Google Scholar 

  2. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Berlin (2012)

    Google Scholar 

  3. Mutothya, N.M., Xu, Y.: Mean first passage time for diffuse and rest search in a confined spherical domain. Phys. A Stat. Mech. Appl. 567, 125667 (2021)

    MathSciNet  Google Scholar 

  4. Zhu, W., Wu, Y.: First-passage time of duffing oscillator under combined harmonic and white-noise excitations. Nonlinear Dyn. 32(3), 291–305 (2003)

    MathSciNet  Google Scholar 

  5. Bressloff, P.C., Newby, J.M.: Metastability in a stochastic neural network modeled as a velocity jump Markov process. SIAM J. Appl. Dyn. Syst. 12(3), 1394–1435 (2013)

    MathSciNet  Google Scholar 

  6. Khovanov, I., Polovinkin, A., Luchinsky, D., McClintock, P.: Noise-induced escape in an excitable system. Phys. Rev. E 87(3), 032116 (2013)

    ADS  Google Scholar 

  7. Matkowsky, B., Schuss, Z.: Diffusion across characteristic boundaries. SIAM J. Appl. Math. 42(4), 822–834 (1982)

    MathSciNet  Google Scholar 

  8. Matkowsky, B., Schuss, Z., Tier, C.: Diffusion across characteristic boundaries with critical points. SIAM J. Appl. Math. 43(4), 673–695 (1983)

    ADS  MathSciNet  Google Scholar 

  9. Naeh, T., Kłosek, M., Matkowsky, B., Schuss, Z.: A direct approach to the exit problem. SIAM J. Appl. Math. 50(2), 595–627 (1990)

    MathSciNet  Google Scholar 

  10. Maier, R.S., Stein, D.L.: Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math. 57(3), 752–790 (1997)

    MathSciNet  Google Scholar 

  11. Allen, R.J., Frenkel, D., ten Wolde, P.R.: Simulating rare events in equilibrium or nonequilibrium stochastic systems. J. Chem. Phys 124(2), 48913 (2006)

    Google Scholar 

  12. Heymann, M., Vanden-Eijnden, E.: The geometric minimum action method: A least action principle on the space of curves. Commun. Pure Appl. Math. 61(8), 1052–1117 (2008)

    MathSciNet  Google Scholar 

  13. Lindley, B.S., Schwartz, I.B.: An iterative action minimizing method for computing optimal paths in stochastic dynamical systems. Phys. D Nonlinear Phenom. 255, 22–30 (2013)

    ADS  MathSciNet  Google Scholar 

  14. Zhou, X., Ren, W.: Adaptive minimum action method for the study of rare events. J. Chem. Phys. 128(10), 104111 (2008)

    ADS  PubMed  Google Scholar 

  15. Cameron, M.: Finding the quasipotential for nongradient SDEs. Phys. D Nonlinear Phenom. 241(18), 1532–1550 (2012)

    ADS  MathSciNet  Google Scholar 

  16. Dahiya, D., Cameron, M.: Ordered line integral methods for computing the quasi-potential. J. Sci. Comput. 75(3), 1351–1384 (2018)

    MathSciNet  Google Scholar 

  17. Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2022)

    Google Scholar 

  18. Weinan, E.: A proposal on machine learning via dynamical systems. Commun. Math. Stat. 1(5), 1–11 (2017)

    MathSciNet  Google Scholar 

  19. Chen, X., Yang, L., Duan, J., Karniadakis, G.E.: Solving inverse stochastic problems from discrete particle observations using the Fokker-Planck equation and physics-informed neural networks. SIAM J. Sci. Comput. 43(3), B811–B830 (2021)

    MathSciNet  Google Scholar 

  20. Li, Y., Duan, J.: A data-driven approach for discovering stochastic dynamical systems with non-Gaussian Lévy noise. Phys. D Nonlinear Phenom. 417, 132830 (2021)

    Google Scholar 

  21. Li, Y., Duan, J.: Extracting governing laws from sample path data of non-Gaussian stochastic dynamical systems. J. Stat. Phys. 186(2), 30 (2022)

    ADS  MathSciNet  Google Scholar 

  22. Zhang, Z., Shin, Y., Em Karniadakis, G.: Gfinns: Generic formalism informed neural networks for deterministic and stochastic dynamical systems. Philos. Trans. R. Soc. A 380(2229), 20210207 (2022)

    ADS  MathSciNet  Google Scholar 

  23. Xu, Y., Zhang, H., Li, Y., Zhou, K., Liu, Q., Kurths, J.: Solving Fokker-Planck equation using deep learning. Chaos 30(1), 013133 (2020)

    ADS  MathSciNet  PubMed  Google Scholar 

  24. Zhang, H., Xu, Y., Liu, Q., Wang, X., Li, Y.: Solving Fokker-Planck equations using deep kd-tree with a small amount of data. Nonlinear Dyn. 108(4), 4029–4043 (2022)

    Google Scholar 

  25. Yeo, K., Melnyk, I.: Deep learning algorithm for data-driven simulation of noisy dynamical system. J. Comput. Phys. 376, 1212–1231 (2019)

    ADS  MathSciNet  Google Scholar 

  26. Li, Y., Duan, J., Liu, X.: Machine learning framework for computing the most probable paths of stochastic dynamical systems. Phys. Rev. E 103(1), 012124 (2021)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  27. Wei, W., Gao, T., Chen, X., Duan, J.: An optimal control method to compute the most likely transition path for stochastic dynamical systems with jumps. Chaos 32(5), 051102 (2022)

    ADS  MathSciNet  PubMed  Google Scholar 

  28. Li, Y., Xu, S., Duan, J., Liu, X., Chu, Y.: A machine learning method for computing quasi-potential of stochastic dynamical systems. Nonlinear Dyn. 109(3), 1877–1886 (2022)

    Google Scholar 

  29. Lin, B., Li, Q., Ren, W.: A data driven method for computing quasipotentials. In Mathematical and Scientific Machine Learning, pp. 652–670. PMLR, (2022)

  30. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    ADS  MathSciNet  Google Scholar 

  31. Jin, X., Cai, S., Li, H., Karniadakis, G.E.: Nsfnets (navier-stokes flow nets): Physics-informed neural networks for the incompressible navier-stokes equations. J. Comput. Phys. 426, 109951 (2021)

    MathSciNet  Google Scholar 

  32. Pang, G., Lu, L., Karniadakis, G.E.: fpinns: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 41(4), A2603–A2626 (2019)

    MathSciNet  Google Scholar 

  33. Yuan, L., Ni, Y.-Q., Deng, X.-Y., Hao, S.: A-pinn: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. J. Comput. Phys. 462, 111260 (2022)

    MathSciNet  Google Scholar 

  34. O’Leary, J., Paulson, J.A., Mesbah, A.: Stochastic physics-informed neural ordinary differential equations. J. Comput. Phys. 468, 111466 (2022)

  35. Liu, D., Wang, Y.: Multi-fidelity physics-constrained neural network and its application in materials modeling. J. Mech. Design 141(12), 121403 (2019)

    Google Scholar 

  36. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-vpinns: Variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Eng. 374, 113547 (2021)

    ADS  MathSciNet  Google Scholar 

  37. Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113028 (2020)

    ADS  MathSciNet  Google Scholar 

  38. Beri, S., Mannella, R., Luchinsky, D.G., Silchenko, A., McClintock, P.V.: Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps. Phys. Rev. E 72(3), 036131 (2005)

    ADS  MathSciNet  CAS  Google Scholar 

  39. Duan, J.: An Introduction to Stochastic Dynamics. Cambridge University Press, New York (2015)

    Google Scholar 

  40. Roy, R.V.: Asymptotic analysis of first-passage problems. Int. J. Nonlinear Mech. 32(1), 173–186 (1997)

    ADS  MathSciNet  Google Scholar 

  41. Maier, R.S., Stein, D.L.: A scaling theory of bifurcations in the symmetric weak-noise escape problem. J. Stat. Phys. 83(3), 291–357 (1996)

    ADS  MathSciNet  Google Scholar 

  42. Keller, Herbert B.: Num. Methods Two Point Bound. Value Problems. Blaisdell Publishing Company, Waltham (1968)

    Google Scholar 

  43. Wang, F.: Bifurcations of nonlinear normal modes via the configuration domain and the time domain shooting methods. Commun. Nonlinear Sci. Num. Simul. 20(2), 614–628 (2015)

    ADS  MathSciNet  Google Scholar 

Download references

Funding

The authors acknowledge support from the National Natural Science Foundation of China (Grant Nos. 12302035, 62073166, 62221004), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220917), the Key Laboratory of Jiangsu Province, the Shandong Provincial Natural Science Foundation under Grant ZR2021ZD13, and the Project on the Technological Leading Talent Teams Led by Frontiers Science Center for Complex Equipment System Dynamics (FSCCESD220401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyuan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, F., Xu, S. et al. A deep learning method for computing mean exit time excited by weak Gaussian noise. Nonlinear Dyn 112, 5541–5554 (2024). https://doi.org/10.1007/s11071-024-09280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09280-w

Keywords

Mathematics Subject Classification

Navigation