Skip to main content
Log in

Analysis of the dynamical perspective of chaos, Lie symmetry, and soliton solution to the Sharma–Tasso–Olver system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This current work examines the 2-dimensional Sharma–Tasso–Olver system (\(\textrm{STOS}\)). This system is crucial for precise wave motion in real-world applications such as wireless networks, systems for control, and digital signal processing. There are three major goals for this investigation. Firstly, the Lie symmetries are constructed and the corresponding transformation is used to reduce the model to an ordinary differential equation. Invariant solutions are established and illustrated via plots. Secondly, we employ the unified Riccati equation expansion (\(\textrm{UREE}\)) approach to obtain several unique soliton solutions, including single, dark periodic, and rational wave solutions across several physical domains for the \(\textrm{STOS}\). Thirdly, we explore the chaotic structure with and without perturbation to the governing model with time series analysis by using chaos theory. The investigations, which concentrate on the nonlinear dynamic behaviors of the solutions, are new and unexplored. These behaviors are shown in 3-D plots, contour plots, 2-D curves, and descriptions of the related physical properties. Our findings demonstrate that the \(\textrm{UREE}\) approach can potentially be used for producing soliton solutions and analyzing them in nonlinear models and dynamic data. This method offers useful mathematical tools and can be applied to the study of wave motion in a dispersive medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Tang, S., Feng, X., Wu, W., Xu, H.: Physics-informed neural networks combined with polynomial interpolation to solve nonlinear partial differential equations. Comput. Math. Appl. 132, 48–62 (2023)

    MathSciNet  Google Scholar 

  2. Liu, C.S., Qiu, L.: Solving the 2D and 3D nonlinear inverse source problems of elliptic type partial differential equations by a homogenization function method. Numer. Methods Partial Differ. Equ. 39(2), 1287–98 (2023)

    MathSciNet  Google Scholar 

  3. Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W., Osman, M.S.: Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quantum Electron. 55(1), 8 (2023)

    Google Scholar 

  4. Alquran, M.: New symmetric bidirectional progressive surface-wave solutions to a generalized fourth-order nonlinear partial differential equation involving second-order time-derivative. J. Ocean. Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.021

    Article  Google Scholar 

  5. Wazwaz, A.M.: New (3+ 1)-dimensional integrable fourth-order nonlinear equation: lumps and multiple soliton solutions. Int. J. Numer. Methods Heat Fluid Flow 32(5), 1664–73 (2022)

    Google Scholar 

  6. Fronk, M.D., Fang, L., Packo, P., Michael, J.L.: Elastic wave propagation in weakly nonlinear media and metamaterials: a review of recent developments. Nonlinear Dyn. 111, 10709–10741 (2023)

    Google Scholar 

  7. Tawfiq, L.N., Kareem, Z.H.: New modification of decomposition method for solving high order strongly nonlinear partial differential equations. AIP Conf. Proc. 2398, 060036 (2022)

    Google Scholar 

  8. Khater, M.M., Muhammad, S., Al-Ghamdi, A., Higazy, M.: Abundant wave structures of the fractional Benjamin–Ono equation through two computational techniques. J. Ocean. Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.01.009

    Article  Google Scholar 

  9. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions, and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108, 4181–4194 (2022)

    Google Scholar 

  10. Javed, S., Ali, A., Ahmad, J., Hussain, R.: Study the dynamic behavior of bifurcation, chaos, time series analysis and soliton solutions to a Hirota model. Opt. Quantum Electron. 55(12), 1114 (2023)

    Google Scholar 

  11. Rehman, H.U., Akber, R., Wazwaz, A.M., Alshehri, H.M., Osman, M.S.: Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method. Optik 289, 171305 (2023)

    ADS  Google Scholar 

  12. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright–dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96(2), 025224 (2020)

    ADS  Google Scholar 

  13. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solit. Fractals 154, 111692 (2022)

    MathSciNet  Google Scholar 

  14. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Google Scholar 

  15. Ibrahim, S., Ashir, A.M., Sabawi, Y.A., Baleanu, D.: Realization of optical solitons from nonlinear Schrödinger equation using modified Sardar sub-equation technique. Opt. Quantum Electron. 55(7), 617 (2023)

    Google Scholar 

  16. Murad, M.A., Ismael, H.F., Hamasalh, F.K., Shah, N.A., Eldin, S.M.: Optical soliton solutions for time-fractional Ginzburg–Landau equation by a modified sub-equation method. Res. Phys. 53, 106950 (2023)

    Google Scholar 

  17. Ali, A., Ahmad, J., Javed, S.: Exact soliton solutions and stability analysis to (3+1)-dimensional nonlinear Schrödinger model. Alex. Eng. J. 76, 747–56 (2023)

    Google Scholar 

  18. Ozisik, M., Secer, A., Bayram, M.: On solitary wave solutions for the extended nonlinear Schrödinger equation via the modified F-expansion method. Opt. Quantum Electron. 55(3), 215 (2023)

    Google Scholar 

  19. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106(1), 891–897 (2021)

    Google Scholar 

  20. Wilson, M., Moroni, S., Holzmann, M., Gao, N., Wudarski, F., Vegge, T., Bhowmik, A.: Neural network ansatz for periodic wave functions and the homogeneous electron gas. Phys. Rev. B. 107(23), 235139 (2023)

    CAS  ADS  Google Scholar 

  21. Chernyak, D., Gainutdinov, A.M., Jacobsen, J.L., Saleur, H.: Algebraic Bethe Ansatz for the open XXZ spin chain with non-diagonal boundary terms via Uqsl2 symmetry. Symmetry Integrab. Geom. Methods Appl. 19, 046 (2023)

    Google Scholar 

  22. Yadav, N., Das, A., Singh, M., Singh, S., Kumar, J.: Homotopy perturbation method and its convergence analysis for nonlinear collisional fragmentation equations. Proc. R. Soc. A. 479(2279), 20230567 (2023)

    MathSciNet  ADS  Google Scholar 

  23. Alim, M.A., Kawser, M.A.: Illustration of the homotopy perturbation method to the modified nonlinear single degree of freedom system. Chaos Solit. Fractals 171, 113481 (2023)

    MathSciNet  Google Scholar 

  24. Salah, M., Ragb, O., Wazwaz, A.M.: Efficient discrete singular convolution differential quadrature algorithm for solitary wave solutions for higher dimensions in shallow water waves. Waves Random Complex (2023). https://doi.org/10.1080/17455030.2022.2136420

    Article  Google Scholar 

  25. Zhang, R., Shah, N.A., El-Zahar, E.R., Akgül, A., Chung, J.D.: Numerical analysis of fractional-order Emden–Fowler equations using modified variational iteration method. Fractals 31(2), 2340028 (2023)

    ADS  Google Scholar 

  26. Ain, Q.T., Nadeem, M., Karim, S., Akgül, A., Jarad, F.: Optimal variational iteration method for parametric boundary value problem. AIMS Math. 7(9), 16649–16656 (2022)

    MathSciNet  Google Scholar 

  27. Akram, S., Ahmad, J., Alkarni, S., Shah, N.A.: Exploration of solitary wave solutions of highly nonlinear KDV-KP equation arise in water wave and stability analysis. Res. Phys. 54, 107054 (2023)

    Google Scholar 

  28. Yamgoué, S.B., Deffo, G.R., Pelap, F.B.: A new rational sine-Gordon expansion method and its application to nonlinear wave equations arising in mathematical physics. Eur. Phys. J. Plus. 134, 1–15 (2019)

    Google Scholar 

  29. Ali, M.H., El-Owaidy, H.M., Ahmed, H.M., El-Deeb, A.A., Samir, I.: Optical solitons and complexitons for generalized Schrödinger–Hirota model by the modified extended direct algebraic method. Opt. Quantum Electron. 55(8), 675 (2023)

    Google Scholar 

  30. Ali, A., Javed, S., Nadeem, M., Iambor, L.F., Mureşan, S.: A soliton solution for the Kadomtsev–Petviashvili model using two novel schemes. Symmetry 15(7), 1364 (2023)

    ADS  Google Scholar 

  31. Wazwaz, A.M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87, 2457–2461 (2017)

    MathSciNet  Google Scholar 

  32. Zhang, R.F., Li, M.C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111(9), 8637–8646 (2023)

    Google Scholar 

  33. Ali, A., Ahmad, J., Javed, S.: Solitary wave solutions for the originating waves that propagate of the fractional Wazwaz–Benjamin–Bona–Mahony system. Alex. Eng. J. 69, 121–33 (2023)

    Google Scholar 

  34. Ali, A., Javed, S., Hussain, R., Muhammad, T.: Secure information transmission using the fractional coupled Schrödinger model: a dynamical perspective. Opt. Quantum Electron. 55(14), 1267 (2023)

    Google Scholar 

  35. Wazwaz, A.M., El-Tantawy, S.A.: Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    CAS  ADS  Google Scholar 

  36. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas–Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    ADS  Google Scholar 

  37. Adytia, D., Tarwidi, D., Kifli, S.A., Pudjaprasetya, S.R.: Staggered grid implementation of 1D Boussinesq model for simulating dispersive wave. J. Phys. Conf. Ser. 971(1), 012020 (2018)

    Google Scholar 

  38. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–8 (2006)

    MathSciNet  ADS  Google Scholar 

  39. Sharma, A.S., Tasso, H.: Connection between wave envelope and explicit solution of a nonlinear dispersive wave equation. Muenchen Germany (1977)

  40. Wang, S., Tang, X.Y., Lou, S.Y.: Soliton fission and fusion: Burgers equation and Sharma–Tasso–Olver equation. Chaos Solitons Fractals 21(1), 231–9 (2004)

    MathSciNet  ADS  Google Scholar 

  41. Chen, A.: Multi-kink solutions and soliton fission and fusion of Sharma–Tasso–Olver equation. Phys. Lett. A. 374(23), 2340–5 (2010)

    MathSciNet  CAS  ADS  Google Scholar 

  42. Wang, C.: Dynamic behavior of traveling waves for the Sharma–Tasso–Olver equation. Nonlinear Dyn. 85, 1119–1126 (2016)

    MathSciNet  Google Scholar 

  43. Wazwaz, A.M.: Two-mode Sharma–Tasso–Olver equation and two-mode fourth-order Burgers equation: multiple kink solutions. Alex. Eng. J. 57(3), 1971–6 (2018)

    Google Scholar 

  44. Wang, G.W., Xu, T.Z.: Invariant analysis and exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation by Lie group analysis. Nonlinear Dyn. 76, 571–580 (2014)

    MathSciNet  Google Scholar 

  45. Kuehl, H.H., Zhang, C.Y.: Effects of higher-order dispersion on envelope solitons. Phys. Fluids B Plasma Phys. 2(5), 889–900 (1990)

    MathSciNet  Google Scholar 

  46. Chen, Y., Wang, Q.: A unified rational expansion method to construct a series of explicit exact solutions to nonlinear evolution equations. Appl. Math. Comput. 177(1), 396–409 (2006)

    MathSciNet  Google Scholar 

  47. Youssif, M.Y., Helal, K.A., Juma, M.Y., Elhag, A.E., Elamin, A.E., Aiyashi, M.A., Abo-Dahab, S.M.: Embed-solitons in the context of functions of symmetric hyperbolic Fibonacci. Symmetry 15(8), 1473 (2023)

    ADS  Google Scholar 

  48. Chahlaoui, Y., Ali, A., Ahmad, J., Javed, S.: Dynamical behavior of chaos, bifurcation analysis and soliton solutions to a Konno–Onno model. PLoS ONE 18(9), e0291197 (2023)

  49. Ali, A., Ahmad, J., Javed, S., Rehman, S.U.: Analysis of chaotic structures, bifurcation and soliton solutions to fractional Boussinesq model. Phys. Scr. 98, 075217 (2023)

  50. Tariq, K.U., Bekir, A., Nisar, S.: The dynamical structures of the Sharma–Tasso–Olver model in doubly dispersive medium. Chaos Solitons Fractals 177, 114290 (2023)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chunhui Project of the Chinese Ministry of Education (202201245).

Author information

Authors and Affiliations

Authors

Contributions

JL developed the study design. MN wrote the manuscript and performed the simulation of this manuscript.

Corresponding author

Correspondence to Muhammad Nadeem.

Ethics declarations

Conflict of interest

The authors claim to have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Nadeem, M. Analysis of the dynamical perspective of chaos, Lie symmetry, and soliton solution to the Sharma–Tasso–Olver system. Nonlinear Dyn 112, 3835–3850 (2024). https://doi.org/10.1007/s11071-023-09250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09250-8

Keywords

Navigation