Skip to main content
Log in

Huygens synchronization of three clocks equidistant from each other

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the synchronization of three identical oscillators, or clocks, suspended from a common rigid support. We consider scenarios where each clock interacts with the other two, achieving synchronization through small impacts exchanged between oscillator pairs. The fundamental outcome of our study reveals that the ultimate synchronized state maintains a phase difference of \(\frac{2\pi }{3}\) between successive clocks, either clockwise or counter-clockwise. Furthermore, these locked states exhibit an attracting set, the closure of which encompasses the entire initial conditions space. Our analytical approach involves constructing a nonlinear discrete dynamical system in dimension two. These findings hold significance for sets of three weakly coupled periodic oscillators engaged in mutual symmetric impact periodic interaction, irrespective of the specific oscillator models employed. Lastly, we explore the amplitude of oscillations at the final locked state in the context of two and three interacting Andronov pendulum clocks. Our analysis reveals a precise small change in the amplitude of the locked-state oscillations, as quantified in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Abraham, R.: Phase Regulation of Coupled Oscillators and Chaos, pp. 49–78. World Scientific, Singapore (1991)

    Google Scholar 

  2. Abraham, R., Garfinkel, A.: The dynamics of synchronization and phase regulation. http://www.ralph-abraham.org/articles/Blurbs/blurb111.shtml (2003)

  3. Adler, R.: A study of locking phenomena in oscillators. Proc. IRE 34(6), 351–357 (1946)

    Article  Google Scholar 

  4. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos. An Introduction to Dynamical Systems. Springer, Berlin (1997)

    Book  Google Scholar 

  5. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergammon Press, Oxford, New York (1959/1963/1966)

  6. Arrowsmith, D.K., Place, C.M., Place, C.H., et al.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  7. Bennett, M., Schatz, M., Rockwood, H., Wiesenfeld, K.: Huygen’s clocks. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 458(2019), 563–579 (2002)

    Article  MathSciNet  Google Scholar 

  8. Birkhoff, G.D.: Collected Mathematical Papers. American Mathematical Society, Providence, Rhode Island (1950)

  9. Boyland, P.L.: Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals. Commun. Math. Phys. 106(3), 353–381 (1986)

    Article  ADS  Google Scholar 

  10. Carvalho, P.R., Savi, M.A.: Synchronization and chimera state in a mechanical system. Nonlinear Dyn. 102(2), 907–925 (2020)

    Article  Google Scholar 

  11. Czolczynski, K., Perlikowski, P., Stefanski, A., Kapitaniak, T.: Huygen’s odd sympathy experiment revisited. Int. J. Bifurc. Chaos 07(21), 2047–2056 (2011)

    Article  Google Scholar 

  12. Fradkov, A., Andrievsky, B.: Synchronization and phase relations in the motion of two-pendulum system. Int. J. Non-Linear Mech. 6(42), 895–901 (2007)

    Article  Google Scholar 

  13. Gilmore, R., Lefranc, M.: The Topology of Chaos, 2nd edn. Wiley, Weinheim (2011)

    Book  Google Scholar 

  14. Goldsztein, G.H., Nadeau, A.N., Strogatz, S.H.: Synchronization of clocks and metronomes: a perturbation analysis based on multiple timescales. Chaos Interdiscip. J. Nonlinear Sci. 31(2), 023109 (2021)

    Article  MathSciNet  Google Scholar 

  15. Guckenheimer, J.: Isochrons and phaseless sets. J. Math. Biol. 1(3), 259–273 (1975)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  16. Huygens, C.: Letters to de Sluse, Constantyn Huygens, (letters; no. 1333 of 24 February 1665, no. 1335 of 26 February 1665, no. 1345 of 6 March 1665). Societe Hollandaise Des Sciences, Martinus Nijho, La Haye (1895)

  17. Jovanovic, V., Koshkin, S.: Synchronization of Huygens’ clocks and the Poincare method. J. Sound Vib. 12(331), 2887–2900 (2012)

    Article  ADS  Google Scholar 

  18. Kapitaniak, M., Czolczynski, K., Perlikowski, P., Stefanski, A., Kapitaniak, T.: Synchronization of clocks. Phys. Rep. 1(517), 1–69 (2012)

    Article  ADS  Google Scholar 

  19. Luo, A.C.J.: Discrete Systems Synchronization, p. pages 197-236. Springer, New York (2013)

    Book  Google Scholar 

  20. Luo, A.C.J.: A theory for synchronization of dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1901–1951 (2009)

  21. Martens, E.A., Thutupalli, S., Fourrièrec, A., Hallatschek, O.: Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. 26(110), 10563–10567 (2013)

  22. Nakao, H.: Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys. 57(2), 188–214 (2016)

    Article  ADS  Google Scholar 

  23. Oliveira, H.M., Melo, L.V.: Huygens synchronization of two clocks. Sci. Rep. 5(11548), 1–12 (2015). https://doi.org/10.1038/srep11548

    Article  Google Scholar 

  24. Oliveira, H.M., Perestrelo, S.: Stability of coupled Huygens oscillators. J. Differ. Equ. Appl. 28(10), 1362–1380 (2022)

    Article  MathSciNet  Google Scholar 

  25. Oud, W.T., Nijmeijer, H., Pogromsky, A.Y.: A Study of Huijgens’ Synchronization: Experimental Results, Volume 336 of Lecture Notes in Control and Information Science, pp. 191–203. Springer, Berlin (2006)

  26. Peña Ramirez, J., Olvera, L.A., Nijmeijer, H., Alvarez, J.: The sympathy of two pendulum clocks: beyond Huygens’ observations. Sci. Rep. 6(1), 23580 (2016)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, Volume 12 of Cambridge Nonlinear Science Series, 1st edn, p. 5. Cambridge University Press, Cambridge (2003)

  28. Senator, M.: Synchronization of two coupled escapement-driven pendulum clocks. J. Sound Vib. 3–5(291), 566–603 (2006)

    Article  ADS  Google Scholar 

  29. Strogatz, S.: Sync: The Emerging Science of Spontaneous Order. Penguin UK (2004)

  30. Vassalo-Pereira, J.: A theorem on phase-locking in two interacting clocks (the Huygens effect). In: Avez, A., Blaquiere, A., Marzollo, A. (eds.) Dynamical Systems and Microphysics: Geometry and Mechanics, pp. 343–352. Academic Press, New York (1982)

    Chapter  Google Scholar 

Download references

Funding

The author ED was partially supported by the program Mobilità Docenti Erasmus+, Univ. Vanvitelli. The author HMO was partially supported by Fundação para a Ciência e Tecnologia, UIDB/04459/2020 and UIDP/04459/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique M. Oliveira.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The steps in the construction of the model

Step 1 first impact. Interactions of \(O_{1}\) on \(O_{2}\) and of \(O_{1}\) on \(O_{3}\), at \(t=0\).

When the system in position A attains phase 0 \(({\text {mod}}2\pi )\) it receives a sudden supply of energy, for short “a kick”, from its escape mechanism, this kick propagates in the common support of the three clocks and reaches the other two clocks.

Now, the phase difference between \(O_{3}\) and \(O_{1}\) is corrected by the perturbative value P:

$$\begin{aligned} \left( CA\right) _{I}=\left( CA\right) _{0}+P\left( \left( CA\right) _{0}\right) ={\psi }_{3}^{0}+P\left( {\psi }_{3}^{0}\right) . \end{aligned}$$

The phase difference between \(O_{1}\) and \(O_{3}\) is

$$\begin{aligned} \left( AC\right) _{I}= & {} \left( AC\right) _{0}+P\left( \left( AC\right) _{0}\right) \\= & {} -{\psi }_{3}^{0}+P\left( -{\psi }_{3}^{0}\right) =-(CA)_{I}, \end{aligned}$$

since P must be an odd function of the mutual phase difference.

The phase difference between \(O_{2}\) and \(O_{1}\) is

$$\begin{aligned} \left( BA\right) _{I}=\left( BA\right) _{0}+P\left( \left( BA\right) _{0}\right) ={\psi }_{2}^{0}+P\left( {\psi }_{2}^{0}\right) , \end{aligned}$$

and the symmetric phase difference between \(O_{1}\) and \(O_{2}\) is

$$\begin{aligned} \left( AB\right) _{I}= & {} \left( AB\right) _{0}+P\left( \left( AB\right) _{0}\right) \\= & {} -{\psi }_{2}^{0}+P\left( -{\psi }_{2}^{0}\right) )=-\left( BA\right) _{I}. \end{aligned}$$

The phase difference between \(O_{3}\) and \(O_{2}\) depends on \(\left( CA\right) _{I}\) and \(\left( BA\right) _{I}\), and it is

$$\begin{aligned} \left( CB\right) _{I}= & {} \left( CA\right) _{I}-\left( BA\right) _{I}\\= & {} {\psi }_{3}^{0}-{\psi }_{2}^{0}+P({\psi }_{3}^{0})-P({\psi }_{2}^{0})=-(CA)_{I}, \end{aligned}$$

Step 2 first natural time shift. The next clock to arrive at \(2\pi ^{-}\), from working hypothesis 3.2 (2), is the clock \(O_{3}\) at vertex C. The situation right before \(O_{3}\) receives its kick of energy is when the phase of this clock is \(2\pi ^{-}\).

At this point we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \psi _{3}^{2} &{} \!\!={2\pi }^{-}\\ \psi _{1}^{2} &{} \!\!=2\pi -(CA)_{I}=2\pi +(AC)_{I}=2\pi -\left( {\psi }_{3}^{0}+P({\psi }_{3}^{0})\right) \\ \psi _{2}^{2} &{} \!\!{=}2\pi {-}\left( CB\right) _{I}{=}2\pi {+}\left( BC\right) _{I}{=}2\pi {+}{\psi }_{2}^{0}{-}{\psi }_{3}^{0}{+}P({\psi }_{2}^{0}){-}P({\psi }_{3}^{0}). \end{array}\right. } \end{aligned}$$

Step 3 second impact. Clock \(O_{3}\) receives its internal kick, at the position \(2\pi \).

Now, we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \psi _{3}^{3} &{} ={2\pi }\\ \psi _{1}^{3} &{} =\psi _{1}^{2}+P(\psi _{1}^{2})\\ &{} =2\pi -\left( {\psi }_{3}^{0}+P({\psi }_{3}^{0})\right) +P\left( 2\pi -\left( {\psi }_{3}^{0}+P({\psi }_{3}^{0})\right) \right) \\ &{} =2\pi -\left( {\psi }_{3}^{0}+P({\psi }_{3}^{0})\right) -P\left( {\psi }_{3}^{0}+P({\psi }_{3}^{0})\right) \\ &{} \simeq 2\pi -{\psi }_{3}^{0}-2P\left( {\psi }_{3}^{0}\right) \\ \psi _{2}^{3} &{} =\psi _{2}^{2}+P(\psi _{2}^{2})\\ &{} =2\pi +{\psi }_{2}^{0}-{\psi }_{3}^{0}+P({\psi }_{2}^{0})-P({\psi }_{3}^{0})\\ &{} +P(2\pi +{\psi }_{2}^{0}-{\psi }_{3}^{0}+P({\psi }_{2}^{0})-P({\psi }_{3}^{0}))\\ &{} =2\pi +{\psi }_{2}^{0}-{\psi }_{3}^{0}+P({\psi }_{2}^{0})-P({\psi }_{3}^{0})\\ &{} +P({\psi }_{2}^{0}-{\psi }_{3}^{0}+P({\psi }_{2}^{0})-P({\psi }_{3}^{0}))\\ &{} \simeq 2\pi +{\psi }_{2}^{0}-{\psi }_{3}^{0}+P\left( {\psi }_{2}^{0}\right) -P\left( {\psi }_{3}^{0}\right) +P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \\ &{} \end{array}\right. } \end{aligned}$$

Step 4 second natural time shift. The next clock to arrive at \(2\pi ^{-}\), from working hypothesis 3.2 (2), is the clock \(O_{2}\) at vertex B. The situation right before \(O_{2}\) receives its kick of energy is when the phase of this clock is \(2\pi ^{-}\).

Then we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \psi _{2}^{4} &{} =2\pi ^{-}\\ \psi _{1}^{4} &{} =\psi _{1}^{3}+2\pi -\psi _{2}^{3}\\ &{} \simeq 2\pi -{\psi }_{3}^{0}-2P\left( {\psi }_{3}^{0}\right) +2\pi \\ &{} -\left( 2\pi +{\psi }_{2}^{0}-{\psi }_{3}^{0}+P\left( {\psi }_{2}^{0}\right) -P\left( {\psi }_{3}^{0}\right) +P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \right) \\ &{} =2\pi -{\psi }_{2}^{0}-P\left( {\psi }_{2}^{0}\right) -P\left( {\psi }_{3}^{0}\right) -P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \\ \psi _{3}^{4} &{} =\psi _{3}^{3}+2\pi -\psi _{2}^{3}\\ &{} \simeq 2\pi +{2\pi }-\left( 2\pi +{\psi }_{2}^{0}-{\psi }_{3}^{0}+P\left( {\psi }_{2}^{0}\right) \right. \\ &{}\left. -P\left( {\psi }_{3}^{0}\right) +P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \right) \\ &{} \simeq 2\pi -{\psi }_{2}^{0}+{\psi }_{3}^{0}-P\left( {\psi }_{2}^{0}\right) +P\left( {\psi }_{3}^{0}\right) -P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) . \end{array}\right. } \end{aligned}$$

Step 5 third impact. Clock \(O_{2}\) receives its internal energy kick. It reaches the position \(2\pi \).

Then we have

$$\begin{aligned}{\left\{ \begin{array}{ll} \psi _{2}^{5} &{} ={2\pi }\\ \psi _{3}^{5} &{} =\psi _{3}^{4}+P(\psi _{3}^{4})\\ &{} \simeq 2\pi -{\psi }_{2}^{0}+{\psi }_{3}^{0}-P\left( {\psi }_{2}^{0}\right) +P\left( {\psi }_{3}^{0}\right) -P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \\ &{} +P(2\pi -{\psi }_{2}^{0}+{\psi }_{3}^{0}-P\left( {\psi }_{2}^{0}\right) +P\left( {\psi }_{3}^{0}\right) -P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) )\\ &{} \simeq 2\pi -{\psi }_{2}^{0}+{\psi }_{3}^{0}-P\left( {\psi }_{2}^{0}\right) +P\left( {\psi }_{3}^{0}\right) \\ &{}-P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) -P({\psi }_{2}^{0}-{\psi }_{3}^{0})\\ &{} =2\pi -{\psi }_{2}^{0}+{\psi }_{3}^{0}-P\left( {\psi }_{2}^{0}\right) +P\left( {\psi }_{3}^{0}\right) -2P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \\ \psi _{1}^{5} &{} =\psi _{1}^{4}+P\left( \psi _{1}^{4}\right) \\ &{} \simeq 2\pi -{\psi }_{2}^{0}-P\left( {\psi }_{2}^{0}\right) -P\left( {\psi }_{3}^{0}\right) -P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) +\\ &{} P\left( 2\pi -{\psi }_{2}^{0}-P\left( {\psi }_{2}^{0}\right) -P\left( {\psi }_{3}^{0}\right) -P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \right) \\ &{} \simeq 2\pi -{\psi }_{2}^{0}{-}P\left( {\psi }_{2}^{0}\right) {-}P\left( {\psi }_{3}^{0}\right) {-}P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) {-}P({\psi }_{2}^{0})\\ &{} =2\pi -{\psi }_{2}^{0}-2P\left( {\psi }_{2}^{0}\right) -P\left( {\psi }_{3}^{0}\right) -P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) . \end{array}\right. } \end{aligned}$$

Step 6 (the final) third natural time shift. The next clock to arrive at \(2\pi ^{-}\), from working hypothesis 3.2 (2), is the clock \(O_{1}\) at vertex A. The situation before \(O_{1}\) receives its kick of energy is when the phase of this clock is \(2\pi ^{-}\), i.e., the cycles are complete.

At this point we are able to describe what happens to the phases after a complete cycle of the reference clock.

We have

$$\begin{aligned} {\left\{ \begin{array}{ll} \psi _{1}^{6} &{} ={2\pi }^{-}\\ \psi _{2}^{6} &{} =\psi _{2}^{5}+2\pi -\psi _{1}^{5}\\ &{} \simeq 2\pi +2\pi -\left( 2\pi -{\psi }_{2}^{0}-2P\left( {\psi }_{2}^{0}\right) -P\left( {\psi }_{3}^{0}\right) \right. \\ &{}\left. -P\left( {\psi }_{2}^{0}-{\psi }_{3} ^{0}\right) \right) \\ &{} =2\pi +{\psi }_{2}^{0}+2P\left( {\psi }_{2}^{0}\right) +P\left( {\psi } _{3}^{0}\right) +P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) ;\\ \psi _{3}^{6} &{} =\psi _{3}^{5}+2\pi -\psi _{1}^{5}\\ &{} \simeq 2\pi -{\psi }_{2}^{0}+{\psi }_{3}^{0}-P\left( {\psi }_{2}^{0}\right) +P\left( {\psi }_{3}^{0}\right) \\ &{}-2P\left( {\psi }_{2}^{0}-{\psi }_{3} ^{0}\right) +2\pi \\ &{} -\left( 2\pi -{\psi }_{2}^{0}-2P\left( {\psi }_{2}^{0}\right) -P\left( {\psi }_{3}^{0}\right) -P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \right) \\ &{} =2\pi +{\psi }_{3}^{0}+P({\psi }_{2}^{0})+2P({\psi }_{3}^{0})-P({\psi }_{2} ^{0}-{\psi }_{3}^{0}). \end{array}\right. } \end{aligned}$$

Now, we compute the phase differences after the first cycle of \(O_{1}\).

We have

$$\begin{aligned} (BA)_{I}&=-(AB)_{I}=\psi _{2}^{6}-\psi _{1}^{6}\\&\simeq 2\pi +{\psi }_{2}^{0}+2P\left( {\psi }_{2}^{0}\right) \\&+P\left( {\psi }_{3}^{0}\right) +P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) -2\pi \\&={\psi }_{2}^{0}+2P\left( {\psi }_{2}^{0}\right) +P\left( {\psi }_{3}^{0}\right) +P\left( {\psi }_{2}^{0}-{\psi }_{3}^{0}\right) \\&=(BA)_{0}+2P((BA)_{0})\\&+P((CA)_{0})+P((BA)_{0}-(CA)_{0})\\ \end{aligned}$$

and

$$\begin{aligned}&(CA)_{I}\\&=-(AC)_{I}=\psi _{3}^{6}-\psi _{1}^{6}\\&=2\pi +{\psi }_{3}^{0}+P({\psi }_{2}^{0})+2P({\psi }_{3}^{0})-P({\psi }_{2}^{0}-{\psi }_{3}^{0})-2\pi \\&={\psi }_{3}^{0}+P({\psi }_{2}^{0})+2P({\psi }_{3}^{0})-P({\psi }_{2}^{0}-{\psi }_{3}^{0})\\&=({(CA)}_{0})+P({(BA)}_{0})+2P({(CA)}_{0})\\&-P((BA)_{0}-(CA)_{0})\\ \end{aligned}$$

Hence, if we set \(x=BA\) and \(y=CA\), we obtain the system

$$\begin{aligned} \left\{ \begin{array}{c}x_{1}=x_{0}+2P(x_{0})+P(y_{0})+P(x_{0}-y_{0})\\ y_{1}=x_{0}+P(x_{0})+2P({y}_{0})-P(x_{0}-y_{0}). \end{array} \right. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Aniello, E., Oliveira, H.M. Huygens synchronization of three clocks equidistant from each other. Nonlinear Dyn 112, 3303–3317 (2024). https://doi.org/10.1007/s11071-023-09241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09241-9

Keywords

Mathematics Subject Classification

Navigation