Skip to main content
Log in

Fractional-order time-delay feedback control for nonlinear dynamics in giant magnetostrictive actuators

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In order to effectively manage the nonlinear dynamic response of giant magnetostrictive actuators (GMA), this study introduces a fractional-order time-delay feedback control scheme. Initially, we establish dimensionless dynamic equations for the controlled system, building upon prior research regarding the GMA’s nonlinear dynamic model. Subsequently, we employ the averaging method to resolve the primary resonance response equation and establish stability conditions for the controlled system. Moreover, we conduct numerical simulations to examine the impact of key structural parameters within the uncontrolled system and the control system’s regulating parameters, which include fractional order, feedback gain coefficient, and time-delay parameter, on the characteristics of the primary resonance response. Finally, we investigate the effects of excitation amplitude and regulating parameters on system bifurcation, chaos, and the basin of attraction. This research reveals that by selecting appropriate regulating parameters, it is possible to eliminate the jump phenomenon in the primary resonance curve, the chaos window, and chaotic attractors, thereby enhancing the system's stability. Consequently, this study lays the theoretical groundwork for implementing fractional-order time-delay feedback control within GMA systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Clark, A.E., Belson, H.S.: Giant room-temperature magnetostriction in TbFe2 and DyFe2. Physi. Rev. B. 5(9), 3642–3644 (1972)

    ADS  Google Scholar 

  2. Xu, H.L., Lei, G., Yan, W., et al.: Micro-displacement amplifier of giant magnetostrictive actuator using flexure hinges. J. Magn. Magn. Mater. 556, 169415 (2022)

    Google Scholar 

  3. Stachowiak, D., Demenko, A.: Finite element and experimental analysis of an axisymmetric electromechanical converter with a magnetostrictive rod. Energies 13(5), 1230 (2020)

    Google Scholar 

  4. Yang, Y.K., Yang, B.T., Niu, M.Q.: Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller. Nonlinear Dyn. 92, 1109–1118 (2018)

    Google Scholar 

  5. Zhu, Y.C., Li, Y.S.: Development of a deflector-jet electrohydraulic servovalve using a giant magnetostrictive material. Smart Mate. Struct. 23(11), 115001 (2014)

    ADS  Google Scholar 

  6. Fang, Z.W., Zhang, Y.W., Li, X., et al.: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 391, 35–49 (2017)

    ADS  Google Scholar 

  7. Braghin, F., Cinquemani, S., Resta, F.: A low frequency magnetostrictive inertial actuator for vibration control science direct. Sens. Actuators A Phys. 180(6), 67–74 (2012)

    CAS  Google Scholar 

  8. Si, C.Y., Yang, B.T., Guang, M.: Ill-conditioned dynamic hysteresis compensation for a low-frequency magnetostrictive vibration shaker. Nonlinear Dyn. 96(1), 535–551 (2019)

    Google Scholar 

  9. Zeng, H.Q., Zeng, G.X.: Nonlinear behaviors of giant magnetostrictive high power ultrasonic transducer. Appl. Mech. Mater. 128–129, 918–922 (2011)

    Google Scholar 

  10. Gao, X., Liu, Y.: Research of giant magnetostrictive actuator’s nonlinear dynamic behaviours. Nonlinear Dyn. 92(3), 793–802 (2018)

    Google Scholar 

  11. Yan, H., Gao, H., Yang, G., et al.: Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator. Chin. Phys. B 29(02), 194–205 (2020)

    Google Scholar 

  12. Nkeutia, S.Z., Tamba, V.K., Talla, P.K.: Hysteretic dynamics inducing coexistence of attractors in a thin magnetostrictive actuator system with quintic nonlinearity. J. Magn. Magn. Mater. 507, 858–878 (2020)

    Google Scholar 

  13. Afzal, M., Kari, L., Lopez Arteaga, I.: Adaptive control of normal load at the friction interface of bladed disks using giant magnetostrictive material. J. Intell. Mater. Syst. Struct. 31(8), 1111–1125 (2020)

    CAS  Google Scholar 

  14. Liu, F., Zhu, Z., Sheng, H., Xu, J.: Nonlinear dynamic characteristics and control of giant magnetostrictive ultrasonic transducer. J. Superconduct. Novel Magn. 32, 2015–2049 (2019)

    Google Scholar 

  15. Zhang, C.L., Mei, D.Q., Chen, Z.C.: Active vibration isolation of a micro-manufacturing platform based on a neural network. J. Mater. Process. Technol. 129, 634–639 (2002)

    Google Scholar 

  16. Nealis, J., Smith, R.: Robust control of a magnetostrictive actuator. In: Proceedings of SPIE-The International Society for Optical Engineering (2003)

  17. Wei, Z., Lei, X.B., Lei, C., et al.: Nonlinear compensation and displacement control of the bias-rate-dependent hysteresis of a magnetostrictive actuator. Precis. Eng. 50(1), 107–113 (2017)

    Google Scholar 

  18. Liu, B., Su, H., Wu, L., et al.: Fractional-order controllability of multi-agent systems with time-delay. Neurocomputing 424, 268–277 (2021)

    Google Scholar 

  19. Agrawal, A.K., Fujino, Y., Bhartia, B.K.: Instability due to time delay and its compensation in active control of structures. Earthq. Eng. Struct. Dyn. 22(3), 211–224 (1993)

    Google Scholar 

  20. Han, S.Y., Tang, G.Y., Chen, Y.H., et al.: Optimal vibration control for vehicle active suspension discrete-time systems with actuator time delay. Asian J. Control. 15(6), 1579–1588 (2013)

    MathSciNet  Google Scholar 

  21. Olgac, N., Holm-Hansen, B.: Design considerations for delayed-resonator vibration absorbers. J. Eng. Mech. 121(1), 80–89 (1995)

    Google Scholar 

  22. Olgac, N., Holm-Hansen, B.: A novel active vibration absorption technique: delayed resonator. J. Sound Vib. 176(1), 93–104 (1994)

    ADS  Google Scholar 

  23. Huang, D.M., Zhou, S.X., Li, R.H., et al.: On the analysis of the tristable vibration isolation system with delayed feedback control under parametric excitation. Mech. Syst. Signal Process. 164, 108207 (2022)

    Google Scholar 

  24. Wen, S.F., Shen, Y.J., Yang, S.P., et al.: Dynamical response of Mathieu–Duffing oscillator with fractional-order delayed feedback. Chaos Solitons Fractals 94(1), 54–62 (2017)

    ADS  MathSciNet  Google Scholar 

  25. Wang, Q.B., Wu, H., Yang, Y.J.: The effect of fractional damping and time-delayed feedback on the stochastic resonance of asymmetric SD oscillator. Nonlinear Dyn. 107(3), 2099–2114 (2022)

    Google Scholar 

  26. Xu, C.J., Liao, M.X., Li, P.L., et al.: Chaos control for a fractional-order jerk system via time delay feedback controller and mixed controller. Fractal Fract. 5(4), 257–284 (2021)

    Google Scholar 

  27. Jiang, S., Li, W., Xin, G., et al.: Analysis of torsional vibration characteristics and time delay feedback control of semi-direct drive cutting transmission system in shearer. Chaos Solitons Fractals 132, 607–619 (2020)

    MathSciNet  Google Scholar 

  28. Cai, C., Xu, Z., Xu, W.: Melnikov’s analysis of time-delayed feedback control in chaotic dynamics. IEEE Trans. Circuits Syst. 49(12), 1724–1728 (2002)

    MathSciNet  Google Scholar 

  29. Gao, H., Deng, Z.M., Zhao, Y.L., et al.: Time-delayed feedback control of nonlinear dynamics in a giant magnetostrictive actuator. Nonlinear Dyn. 108(1), 1–24 (2022)

    Google Scholar 

  30. Ortigueira, M.D.: An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circuits Syst. Mag. 8(3), 19–20 (2008)

    Google Scholar 

  31. Chandrashekar, A., Belardinelli, P., Staufer, U., Alijani, F.: Robustness of attractors in tapping mode atomic force microscopy. Nonlinear Dyn. 97, 1137–1158 (2019)

    Google Scholar 

  32. Ding, C., Cao, J., Chen, Y.: Fractional-order model and experimental verification for broadband hysteresis in piezoelectric actuators. Nonlinear Dyn. 98, 3143–3153 (2019)

    Google Scholar 

  33. Tanekou, G.B., Fogang, C.F., Pelap, F.B., et al.: Complex dynamics in the two spring-block model for earthquakes with fractional viscous damping. Eur. Phys. J. Plus. 135(7), 1–26 (2020)

    Google Scholar 

  34. Alotta, G., Di Paola, M., Failla, G., Pinnola, F.P.: On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos. Part B Eng. 137, 102–110 (2018)

    Google Scholar 

  35. Sylvain, Z.N., Victor, K.T., Nkamgang, G.B., et al.: Fractional-order analysis of thin magnetostrictive actuators (TMA): analytical solutions, rich dynamics and control. Int. J. Dynam. Control. 10, 748–759 (2022)

    MathSciNet  Google Scholar 

  36. Molina, M.I.: Fractional dynamics in nonlinear magnetic metamaterials. J. Magn. Magn. Mater. 523, 167573 (2021)

    CAS  Google Scholar 

  37. Zhang, Y., Sun, H., Stowell, H.H., et al.: A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 102, 29–46 (2017)

    ADS  MathSciNet  CAS  Google Scholar 

  38. Li, C., Su, K., Wu, L.: Adaptive sliding mode control for synchronization of a fractional-order chaotic system. J. Comput. Nonlinear Dyn. 8(3), 031005 (2012)

    Google Scholar 

  39. Li, C., Zhang, J.: Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability. Int. J. Syst. Sci. 47(10), 2440–2448 (2015)

    MathSciNet  Google Scholar 

  40. Sun, H.G.: Coupled Magneto-Elastic Theory of Giant Magnetostrictive Transducer and Application in Cutting Machining. Northeastern University, New York (2008)

    Google Scholar 

  41. Dozor, D.M., Gerver, M.J., Swenbeck, J.R.: Nonlinear modeling for control of Terfenol-D based actuators. SPIE Proc. 3039(1), 644–654 (1997)

    ADS  CAS  Google Scholar 

  42. Lu, W.S.: Computational Design and Manufacturing of Disc Spring. Fudan University Press, Shanghai (1990)

    Google Scholar 

  43. Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Beijing (2011)

    Google Scholar 

  44. Shen, Y.J., Wei, P., Yang, S.P.: Primary resonance of fractional-order van der Pol oscillator. Nonlinear Dyn. 77(4), 1629–1642 (2014)

    MathSciNet  Google Scholar 

  45. Shen, Y.J., Yang, S.P., Xing, H.J., et al.: Primary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3092–3100 (2012)

    ADS  MathSciNet  Google Scholar 

  46. Li, C., Xiong, J., Li, W., Tong, Y., Zeng, Y.: Robust synchronization for a class of fractional-order dynamical system via linear state variable. Indian J. Phys.J. Phys. 87(7), 673–678 (2013)

    ADS  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant No. 52266005 and Basic Research Funds for Universities (Research and engineering development of low frequency chaos in rare earth giant magnetostrictive bone conduction oscillators).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhen Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Some or all data, models, or code generated or used during the study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Ma, Q., Wang, J. et al. Fractional-order time-delay feedback control for nonlinear dynamics in giant magnetostrictive actuators. Nonlinear Dyn 112, 3055–3079 (2024). https://doi.org/10.1007/s11071-023-09228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09228-6

Keywords

Navigation