Skip to main content
Log in

Exploring noise-induced dynamics and optimal control strategy of iSIR cholera transmission model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Few existing studies establish the fact that although human pathogen exists in the environmental reservoir, infectious disease outbreak is rare. In this article, we investigate the dynamics of cholera disease where the transmission occurs via contact with a contaminated reservoir. A deterministic iSIR compartmental epidemic model is formulated and explored the realistic situation, in which the quantity of ingested pathogens must exceed a critical threshold, the minimal infectious dose (MID), in order to infect healthy population. Bacteria growth rate is considered to follow the Allee effect. This model system shows multi-stability and undergoes transcritical and saddle-node bifurcations with respect to various parameters. Thus, external environmental noise can give rise to observable dynamics for the stochastic counterpart. One can see a noise-induced frequent transitions between two separate interior attractors, in particular for the cases where the deterministic model displays bistability. The global sensitivity using PRCC method is performed. Also, the optimal control for the developed deterministic cholera epidemic model is carried out with numerical illustrations. Our model primarily designed to explain and predict the indirectly transmitted cholera epidemic model incorporating the idea of MID. This study gives a different outlook for the transmission of disease from the human-centered perspective to socioeconomic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. https://www.cdc.gov/cholera/general/index.html (2022)

  2. https://www.who.int/emergencies/disease-outbreak-news/item/2022-don426 (2022)

  3. Baishya, M., Chakraborti, C.: Non-equilibrium fluctuation in Volterra–Lotka systems. Bull. Math. Biol. 49, 125–131 (1987)

    MathSciNet  CAS  PubMed  Google Scholar 

  4. Bandyopadhyay, M., Chakrabarti, C.: Deterministic and stochastic analysis of a nonlinear prey-predator system. J. Biol. Syst. 11(02), 161–172 (2003)

    Google Scholar 

  5. Bandyopadhyay, M., Chattopadhyay, J.: Ratio-dependent predator-prey model: effect of environmental fluctuation and stability. Nonlinearity 18(2), 913 (2005)

    ADS  MathSciNet  Google Scholar 

  6. Berhe, H.W.: Optimal control strategies and cost-effectiveness analysis applied to real data of cholera outbreak in Ethiopia’s Oromia region. Chaos, Solitons Fractals 138, 109933 (2020)

    MathSciNet  Google Scholar 

  7. Capasso, V., Paveri-Fontana, S.: A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev. d’Epidemiol. Sante Publique 27(2), 121–132 (1979)

    CAS  Google Scholar 

  8. Capone, F., Carfora, M.F., De Luca, R., Torcicollo, I.: Analysis of a model for waterborne diseases with Allee effect on bacteria. Nonlinear Anal. Model. Control 25(6), 1035–1058 (2020)

    MathSciNet  Google Scholar 

  9. Carletti, M.: On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment. Math. Biosci. 175(2), 117–131 (2002)

    MathSciNet  CAS  PubMed  Google Scholar 

  10. Chitsulo, L., Engels, D., Montresor, A., Savioli, L.: The global status of schistosomiasis and its control. Acta Trop. 77(1), 41–51 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Codeço, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1(1), 1–14 (2001)

    PubMed  PubMed Central  Google Scholar 

  12. Colwell, R., Brayton, P., Herrington, D., Tall, B., Huq, A., Levine, M.: Viable but non-culturable vibrio cholerae o1 revert to a cultivable state in the human intestine. World J. Microbiol. Biotechnol. 12, 28–31 (1996)

    CAS  PubMed  Google Scholar 

  13. Das, P., Das, P., Mukherjee, S.: Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions. Phys. A Stat. Mech. Appl. 541, 123603 (2020)

    MathSciNet  Google Scholar 

  14. Das, P., Mondal, P., Das, P., Roy, T.K.: Stochastic persistence and extinction in tumor-immune system perturbed by white noise. Int. J. Dyn. Control 10(2), 620–629 (2022)

    MathSciNet  Google Scholar 

  15. Das, P., Mukherjee, S., Das, P., Banerjee, S.: Characterizing chaos and multifractality in noise-assisted tumor-immune interplay. Nonlinear Dyn. 101(1), 675–685 (2020)

    Google Scholar 

  16. Das, P., Upadhyay, R.K., Misra, A.K., Rihan, F.A., Das, P., Ghosh, D.: Mathematical model of Covid-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccination. Nonlinear Dyn. 106(2), 1213–1227 (2021)

    PubMed  PubMed Central  Google Scholar 

  17. Fields, B.S., Benson, R.F., Besser, R.E.: Legionella and legionnaires’ disease: 25 years of investigation. Clin. Microbiol. Rev. 15(3), 506–526 (2002)

    PubMed  PubMed Central  Google Scholar 

  18. Ghosh, M., Das, P., Das, P.: A comparative study of deterministic and stochastic dynamics of rumor propagation model with counter-rumor spreader. Nonlinear Dyn. 111(18), 16875 (2023)

    Google Scholar 

  19. Habees, A.A., Aldabbas, E., Bragazzi, N.L., Kong, J.D.: Bacteria-bacteriophage cycles facilitate cholera outbreak cycles: an indirect susceptible-infected-recovered-bacteria-phage (isirbp) model-based mathematical study. J. Biol. Dyn. 16(1), 29–43 (2022)

    MathSciNet  PubMed  Google Scholar 

  20. Hartley, D.M., Morris, J.G., Jr., Smith, D.L.: Hyperinfectivity: a critical element in the ability of v. cholerae to cause epidemics? PLoS Med. 3(1), e7 (2006)

    PubMed  Google Scholar 

  21. Janeway, C., Murphy, K.P., Travers, P., Walport, M.: Janeway’s Immuno Biology. Garland Science, New York, NY (2008)

    Google Scholar 

  22. Jensen, M.A., Faruque, S.M., Mekalanos, J.J., Levin, B.R.: Modeling the role of bacteriophage in the control of cholera outbreaks. Proc. Natl. Acad. Sci. 103(12), 4652–4657 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joh, R.I., Wang, H., Weiss, H., Weitz, J.S.: Dynamics of indirectly transmitted infectious diseases with immunological threshold. Bull. Math. Biol. 71, 845–862 (2009)

    MathSciNet  PubMed  Google Scholar 

  24. Karatzas, I., Karatzas, I., Shreve, S., Shreve, S.E.: Brownian Motion and Stochastic Calculus, vol. 113. Springer, Cham (1991)

    Google Scholar 

  25. Kaul, R.B., Kramer, A.M., Dobbs, F.C., Drake, J.M.: Experimental demonstration of an Allee effect in microbial populations. Biol. Lett. 12(4), 20160070 (2016)

    PubMed  PubMed Central  Google Scholar 

  26. Kong, J.D., Davis, W., Li, X., Wang, H.: Stability and sensitivity analysis of the iSIR model for indirectly transmitted infectious diseases with immunological threshold. SIAM J. Appl. Math. 74(5), 1418–1441 (2014)

    MathSciNet  Google Scholar 

  27. Lemos-Paião, A.P., Silva, C.J., Torres, D.F.: An epidemic model for cholera with optimal control treatment. J. Comput. Appl. Math. 318, 168–180 (2017)

    MathSciNet  Google Scholar 

  28. Levine, M.M., Black, R.E., Clemens, M.L., Nalin, D.R., Cisneros, L., Finkelstein, R.A.: Volunteer Studies in Development of Vaccines Against Cholera and Enterotoxigenic Eschericha coli: A Review [Book Chapter]. Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands (1981)

    Google Scholar 

  29. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  30. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton, NJ (2019)

    Google Scholar 

  31. Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L., Morris, J.G., Jr.: Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in zimbabwe. Proc. Natl. Acad. Sci. 108(21), 8767–8772 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Panja, P.: Optimal control analysis of a cholera epidemic model. Biophys. Rev. Lett. 14(01), 27–48 (2019)

    Google Scholar 

  33. Phan, T.A., Tian, J.P., Wang, B.: Dynamics of cholera epidemic models in fluctuating environments. Stoch. Dyn. 21(02), 2150011 (2021)

    MathSciNet  Google Scholar 

  34. Rose, J.B.: Environmental ecology of cryptosporidium and public health implications. Annu. Rev. Public Health 18(1), 135–161 (1997)

    CAS  PubMed  Google Scholar 

  35. Settati, A., Lahrouz, A., Assadouq, A., El Fatini, M., El Jarroudi, M., Wang, K.: The impact of nonlinear relapse and reinfection to derive a stochastic threshold for SIRI epidemic model. Chaos Solitons Fractals 137, 109897 (2020)

    MathSciNet  Google Scholar 

  36. Song, Y., Yuan, S.: Bifurcation analysis in a predator-prey system with time delay. Nonlinear Anal. Real World Appl. 7(2), 265–284 (2006)

    MathSciNet  Google Scholar 

  37. Sotomayor, J.: Generic bifurcations of dynamical systems. In: Dynamical Systems, pp. 561–582. Elsevier, Amsterdam (1973)

    Google Scholar 

  38. Tapaswi, P., Mukhopadhyay, A.: Effects of environmental fluctuation on plankton allelopathy. J. Math. Biol. 39, 39–58 (1999)

    MathSciNet  Google Scholar 

  39. Tian, J.P., Wang, J.: Global stability for cholera epidemic models. Math. Biosci. 232(1), 31–41 (2011)

    MathSciNet  PubMed  Google Scholar 

  40. Upadhyay, R.K., Banerjee, M., Parshad, R., Raw, S.N.: Deterministic chaos versus stochastic oscillation in a prey-predator-top predator model. Math. Model. Anal. 16(3), 343–364 (2011)

  41. Wolfe, M.S.: Giardiasis. Clin. Microbiol. Rev. 5(1), 93–100 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, J., Dhingra, R., Gambhir, M., Remais, J.V.: Sensitivity analysis of infectious disease models: methods, advances and their application. J. R. Soc. Interface 10(86), 20121018 (2013)

    PubMed  PubMed Central  Google Scholar 

  43. Yang, X., Chen, L., Chen, J.: Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models. Comput. Math. Appl. 32(4), 109–116 (1996)

    MathSciNet  Google Scholar 

  44. Zhang, X., Peng, H.: Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching. Appl. Math. Lett. 102, 106095 (2020)

    MathSciNet  Google Scholar 

  45. Zhou, X., Shi, X., Wei, M.: Dynamical behavior and optimal control of a stochastic mathematical model for cholera. Chaos Solitons Fractals 156, 111854 (2022)

    MathSciNet  Google Scholar 

Download references

Funding

No funding is available for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar Upadhyay.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical approval

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, S., Mondal, B., Upadhyay, R.K. et al. Exploring noise-induced dynamics and optimal control strategy of iSIR cholera transmission model. Nonlinear Dyn 112, 3951–3975 (2024). https://doi.org/10.1007/s11071-023-09221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09221-z

Keywords

Navigation