Skip to main content
Log in

Multi-exciton transfer in a biomolecular system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Peyrard–Bishop model was modified in the present work by taking into account two types of exciton vibrations, and the dynamics of the system is governed by two Schrödinger and four nonlinear equations of motion. Attention is paid to the effective coupling parameter \(\alpha '\)(\(\alpha \)), which strongly controlled the dynamics of multi-excitons circulating in the molecular systems. The regions of turbulence were remarkably higher, predicting that an increase in \(\nu '\)(\(\nu \)) could gradually turned off the propagation of multi-structures. This was approved by numerical simulations, where only one base pair was excited and generated all the dynamics of the entire system. Multi-excitons as modes were obtained, and the dependence of the transport of genetic information on the conformation of double helix was widely analyzed. In addition, the long-term evolution of excitons transport was raised and we predicted a gradual disparity of its temporal evolution as \(\nu '\) increased. The same behaviors were observed, and wave patterns were found to resist to fluctuations when we introduced noises effect, which was in agreement with earlier research. Damping forces influenced steeply the birth of multi-excitons formation states by generating or killing the new structures and therefore perturbed the intensity of polarons in the biomolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The author declare that they have no data availability.

References

  1. Li, L.F., Yan, Y.S., Xie, Y.Y.: Localized excitation and folded solitary wave for an extended (3+1)-dimensional B-type Kadomtsev-Petviashvili equation. Nonlinear. Dyn. 109, 2013–2027 (2022)

    Google Scholar 

  2. Li, L.F., Nie, Y.F., Zhu, M.T., Xie, Y.Y.: Variable separation solution and multi-valued soliton of an extended (3+1)-dimensional B-type Kadomtsev-Petviashvili equation. Nonlinear. Dyn. 111, 4723–4736 (2023)

    Google Scholar 

  3. Xie, Y.Y., Li, L.F., Kang, Y.: New solitons and conditional stability to the high dispersive nonlinear Schrödinger equation with parabolic law nonlinearity. Nonlinear. Dyn. 103, 1011–1021 (2021)

    Google Scholar 

  4. Hosseini, K., Hincal, E., Baleanu, D., Obi, O.A.: Non-singular multi-complexiton wave to a generalized KdV equation. Nonlinear. Dyn. 111, 7591–7597 (2023)

    Google Scholar 

  5. Li, L.F., Wu, J.Y., Xie, Y.Y.: Direct separation approach and multivalued localized excitation for (M+N)-dimensional nonlinear system. Chinese. J. Phys. 85, 168–185 (2023)

    ADS  MathSciNet  Google Scholar 

  6. Meggers, E., Michel-Beyerle, M., Giese, B.: Sequence dependent long range hole transport in DNA. Am. J. Chem. Soc. 120, 12950–12955 (1998)

    CAS  Google Scholar 

  7. Giese, B., Wessely, S., Spormann, M., Lindemann, U., Meggers, E., Michel-Beyerle, M.E.: On the mechanism of long range electron transfer through DNA. Angewandte Chemie Inter. Ed. 38, 996–998 (1999)

    CAS  Google Scholar 

  8. Lakhno, V.D.: Soliton-like solutions and electron transfer in DNA. J. Biol. Phys. 26, 133–147 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Okahata, Y., Kobayashi, T., Tanaka, K., Shimomura, M.: Anisotropic electric conductivity in an aligned DNA cast film. J. Am. Chem. Soc. 120, 6165 (1998)

    CAS  Google Scholar 

  10. Kivshar, Y.S., Peyrard, M.: Modulational instability in discrete lattices. Phys. Rev. A 46, 3198 (1992)

    ADS  CAS  PubMed  Google Scholar 

  11. Dekker, C., Ratner, M.A.: Electronic properties of DNA. Phys. World. 14, 29–33 (2001)

    CAS  Google Scholar 

  12. Ly, D., Sanii, L., Schuster, G.B.: Mechanism of charge transport in DNA: internally-linked anthraquininone conjugates support phonon-phononassisted polaron hopping. J. Am. Chem. 21, 9400 (1999)

    Google Scholar 

  13. Bixon, M., Jortner, J.: Energetic control and kinetics of hole migration in DNA. Chem. B 104, 3906 (2000)

    CAS  Google Scholar 

  14. Nunez, M., Hall, D.B., Barton, J.K.: Long-range oxidative damage to DNA: effect of distance and sequence. Chem. Biol. 6, 85 (1999)

    CAS  PubMed  Google Scholar 

  15. Daniel, M., Vasumathi, V.: Nonlinear molecule excitations in a completely inhomogeneous DNA chain. Phys. Lett A 372, 5144–5151 (2008)

    ADS  CAS  Google Scholar 

  16. Kelly, S.O., Barton, J.K.: Electron transfer between bases in double helical DNA. Science 283, 1375 (1999)

    Google Scholar 

  17. Yomosa, S.: Solitary excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A 30, 474–480 (1984)

    ADS  MathSciNet  CAS  Google Scholar 

  18. Arkin, M.R.: Rates of DNA-mediated electron transfer between metallointercalators. Science 273, 475–480 (1996)

    ADS  CAS  PubMed  Google Scholar 

  19. Porath, D., et al.: Direct measurement of electrical transport through DNA molecules. Nature 403, 635 (2000)

    ADS  CAS  PubMed  Google Scholar 

  20. Tai, K., Hasegawa, A., Tomita, A.: Observation of modulational instability in optics fibers. Phys. Rev. Lett 56, 135 (1986)

    ADS  CAS  PubMed  Google Scholar 

  21. Dauxois, T., Peyrard, M., Bishop, A.R.: Thermodynamics of nonlinear model for DNA denaturation. Phys. D 66, 35–42 (1993)

    CAS  Google Scholar 

  22. Barbi, M., Cocco, S., Peyrard, M.: Helicoidal model for DNA opening. Phys. Lett. A 253, 358–369 (1999)

    ADS  CAS  Google Scholar 

  23. Grozema, F.C., Tonzani, S., Berlin, Y.A., Schatz, G.C., Siebbels, L.D.A., Ratner, M.A.: Mechanism of charge migration through DNA:? Molecular wire behavior, single-step tunneling or hopping. J. Am. Chem. Soc. 130, 5157–5166 (2008)

    CAS  PubMed  Google Scholar 

  24. Hosseini, K., Hincal, E., Llie, M.: Bifurcation analysis chaotic, behaviors, sensitivity, analysis and soliton solutions of a generalized Schrodinger equation. Nonlinear. Dyn. 111, 17455–17462 (2023)

    Google Scholar 

  25. Aubry, S.: In nonlinear lattices: existence, linear stability and breathers quantization. Physica. D 103, 201–250 (2008)

    ADS  Google Scholar 

  26. Tronche, C., Goodman, B.K., Greenberg, M.M.: DNA damage induced via independent generation of the radical resulting from formal hydrogen abstraction from the C19-position of a nucleotide. Chem. Biol 5, 263–271 (1998)

    CAS  PubMed  Google Scholar 

  27. Ly, D., Sanii, L., Schuster, G.B.: Charge Migration in DNA. Perspectives from physics, chemistry and biology. J. Am. Chem. Soc. 121, 9400–9410 (1999)

    CAS  Google Scholar 

  28. Lakhno, V.D.: Dynamical theory of primary processes of charge separation in the photosynthetic reaction. J. Biol. Phys. 31, 145–159 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gasper, S.M., Schuster, G.B.: Fundamental aspects of DNA-mediated charge transport. J. Am. Chem. Soc 119, 12762–12771 (1997)

    CAS  Google Scholar 

  30. Silva, R.A.S., Drigo-Filho, E., Ruggiero, J.R.: A model coupling vibrational and rotational motion for the DNA molecule. J. Biol. Phys 34, 511–519 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ngoubi, H., Ben-Bolie, G.H., Kofané, T.C.: Charge transport in DNA model with vibrational and rotational coupling motions. J. Biol. Phys. 43, 341–351 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shirmovsky, SEh.: Quantum dynamics of a hole migration through DNA: a single strand DNA model. Biophysical. Chem. 217, 42–57 (2017)

    Google Scholar 

  33. Shirmovsky, S.E., Boyda, D.L.: Study of DNA conducting properties: reversible and irreversible evolution. Biophys. Chem. 217, 180–181 (2013)

    Google Scholar 

  34. Mohamadou, A., Kofane, T.C.: Modulational instability and pattern formation in discrete dissipative systems. Phys. Rev. E 73, 046607 (2006)

    ADS  Google Scholar 

  35. Qu, Z., Li, Y., Liu, W., Kang, D.W., Xie, S.J.: Effect of temperature on polaron dynamics in poly-DNA. Phys. Lett. A 373, 2189–2192 (2009)

    ADS  CAS  Google Scholar 

  36. Ngoubi, H., Ben-Bolie, G.H., Kofané, T.C.: Delocalized charge through the DNA with microscopic effect. Eur. Phys. J. Plus 137, 166 (2022)

    CAS  Google Scholar 

  37. Kalosakas, G., Rasmussen, K.O., Bishop, A.R.: Charge trapping in DNA due to intrinsic vibrational hot spots. J. Chem. Phys. 118, 3731 (2003)

    ADS  CAS  Google Scholar 

  38. Kalosakas, G.: Charge transport in DNA: dependence of diffusion coefficient on temperature and electron-phonon coupling constant. Phys. Rev. E 84, 051905 (2011)

    ADS  CAS  Google Scholar 

  39. Hennig, D., Archilla, J.F.R., Agrawal, J.: Nonlinear charge transport mechanism in periodic and disordered DNA. Physica. D 180, 256 (2003)

    ADS  CAS  Google Scholar 

  40. Ren, W., Wang, J., Ma, Z., Guo, H.: Negative quantum capacitance of gated carbon nanotubes. Phys. Rev. B 72, 035455 (2005)

    ADS  Google Scholar 

  41. Fermi, E., Pasta, J., Ulam, S.: Los Alamos Report La -1940. Published latter in collected Papers of Enrico Fermi.(E. Segre, Ed.),(Chicago: University of Cicago Press)

  42. Madhukalya, B., Das, R., Hosseini, K., Baleanu, D., Hincal, E.: Effect of ion and negative ion temperatures on KdV and mKdV solitons in a multicomponent plasma. Nonlinear. Dyn. 111, 8659–8671 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henock Ngoubi.

Ethics declarations

Conflict of interest

There is no competing conflict of interests statement related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoubi, H., Sali, I., Mvogo, A. et al. Multi-exciton transfer in a biomolecular system. Nonlinear Dyn 112, 3887–3901 (2024). https://doi.org/10.1007/s11071-023-09216-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09216-w

Keywords

Navigation