Skip to main content
Log in

A memristive chaotic map with only one bifurcation parameter

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Discrete memristor can be introduced for chaos producing conveniently even combined with easy amplitude control. Such a case is designed in this work, in which all the rest parameters are independent amplitude controllers except the only one for bifurcation. The memristor-related parameters only rescale the sequence partially or totally without revising the Lyapunov exponents. More controllers bring greater convenience for chaos application, meanwhile, less bifurcation parameters pose less risks for chaos-based engineering. The STM32-based circuit is constructed to verify the characteristics of amplitude control. Furthermore, a secure optical communication system is built based on the memristive map showing its high performance in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wieczorek, P.Z., Gołofit, K.: True random number generator based on flip-flop resolve time instability boosted by random chaotic source. IEEE Trans. Circuits Syst. I Reg. Pap. 65(4), 1279–1292 (2018)

    Article  Google Scholar 

  2. Lin, H., Wang, C., Du, S.: A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting. Chaos Soliton Fract 172, 113518 (2023)

    Article  Google Scholar 

  3. Lin, H., Wang, C., Sun, Y.: A universal variable extension method for designing multiscroll/wing chaotic systems. IEEE Trans. Ind. Electron. (2023)

  4. Chua, L.O.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)

    Article  ADS  Google Scholar 

  5. Yao, P.: Fully hardware-implemented memristor convolutional neural network. Nature 577(7550), 641–646 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Chua, L.O.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015)

    Article  Google Scholar 

  7. Wu, F., Wang, R.: Synchronization in memristive HR neurons with hidden coexisting firing and lower energy under electrical and magnetic coupling. Commun. Nonlinear Sci. Numer. Simul. 126, 107459 (2023)

    Article  MathSciNet  Google Scholar 

  8. Corinto, F., Forti, M.: Memristor circuits: Bifurcations without parameters. IEEE Trans. Circuits Syst. I. Reg. Pap. 64(6), 1540–1551 (2017)

    Article  Google Scholar 

  9. Wu, F., Guo, Y., Ma, J.: Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn. 109(3), 2063–2084 (2022)

    Article  Google Scholar 

  10. Zhang, S., Li, C., Zheng, J., Wang, X., Zeng, Z., Peng, X.: Generating any number of initial offset-boosted coexisting Chua’s double-scroll attractors via piecewise-nonlinear memristor. IEEE Trans. Ind. Electron. 69(7), 7202–7212 (2022)

    Article  Google Scholar 

  11. Jin, P., Wang, G., Liang, Y., Herbert, L., Chua, L.: Neuromorphic dynamics of Chua corsage memristor. IEEE Trans. Circuits Syst. I Reg. Papers 68(11), 4419–4432 (2021)

    Article  Google Scholar 

  12. Lin, H., Wang, C., Cui, L., Sun, Y., Xu, C., Yu, F.: Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inform (2019).

  13. Peng, Y., Sun, K., He, S.: A discrete memristor model and its application in henon map. Chaos Soliton Fract 137, 109873 (2020)

    Article  Google Scholar 

  14. Bao, H., Li, H., Hua, Z., Xu, Q., Bao, B.: Sine-transform-based memristive hyperchaotic model with hardware implementation. IEEE Trans. Ind. Inform. 18(3), 1726–1736 (2021)

    Google Scholar 

  15. Li, K., Bao, H., Li, H.: Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inform. 18(3), 1726–1736 (2021)

    Article  Google Scholar 

  16. Wang, N., Li, C., Bao, H.: Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode. IEEE Trans. Circuits Syst. I Regul. Pap. 66(12), 4767–4779 (2019)

    Article  Google Scholar 

  17. Zhou, X., Li, C., Lu, X., Lei, T.: A 2D hyperchaotic map: Amplitude control, coexisting symmetrical attractors and circuit implementation. Symmetry 13(6), 1047 (2021)

    Article  ADS  Google Scholar 

  18. Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 25(10), 1530025 (2015)

    Article  MathSciNet  Google Scholar 

  19. Zhou, X., Li, C., Li, Y., Lu, X., Lei, T.: An amplitude-controllable 3-d hyperchaotic map with homogenous multistability. Nonlinear Dyn. 105, 1843–1857 (2021)

    Article  Google Scholar 

  20. Li, Y., Li, C., Liu, S., Hua, Z., Jiang, H.: A 2-D conditional symmetric hyperchaotic map with complete control. Nonlinear Dyn. 109, 1155–1165 (2022)

    Article  Google Scholar 

  21. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  22. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(07), 1465–1466 (1999)

    Article  MathSciNet  Google Scholar 

  23. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002)

    Article  MathSciNet  Google Scholar 

  24. Li, Y., Li, C., Zhang, S., Chen, G., Zeng, Z.: A self-reproduction hyperchaotic map with compound lattice dynamics. IEEE Trans. Ind. Electron. 69(10), 10564–10572 (2022)

    Article  Google Scholar 

  25. Panahi, S., Sprott, J.C., Jafari, S.: Two simplest quadratic chaotic maps without equilibrium. Int. J. Bifurc. Chaos 28(12), 1850144 (2018)

    Article  MathSciNet  Google Scholar 

  26. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  27. Zhang, S, Li, C., Zheng, J.: Memristive autapse-coupled neuron model with external electromagnetic radiation effects. IEEE Trans. Ind. Electron (2022).

  28. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)

    Article  MathSciNet  Google Scholar 

  29. Li, C., Sprott, J.C., Xing, H.: Crisis in amplitude control hides in multistability. Int. J. Bifurc. Chaos 26(14), 1650233 (2016)

    Article  MathSciNet  Google Scholar 

  30. Li, Y., Li, C., Liu, S.: An initially-controlled double-scroll hyperchaotic map. Int. J. Bifurc. Chaos 32(08), 2250119 (2022)

    Article  MathSciNet  Google Scholar 

  31. Garcia-Bosque, M., Prez-Resa, A., Snchez-Azqueta, C., Aldea, C., Celma, S.: Chaos-based bitwise dynamical pseudorandom number generator on FPGA. IEEE Trans. Instrum. Meas. 68(1), 291–293 (2019)

    Article  ADS  Google Scholar 

  32. Kumar, A., Chandra, R.K.: A coupled variable input LCG method and its VLSI architecture for pseudorandom bit generation. IEEE Trans. Instrum. Meas. 69(4), 1011–1019 (2020)

    Article  ADS  Google Scholar 

  33. Li, Y., Li, C., Zhao, Y., et al.: Memristor-type chaotic mapping. Chaos Interdiscip. J. Nonlinear Sci. 32(2), 021104 (2022)

    Article  MathSciNet  Google Scholar 

  34. Al-Zubaidi, F.M.A., Lopez, J.D., Montero, D.S., Vazquez, C.: Optically powered radio-over-fiber systems in support of 5G cellular networks and IoT. J. Lightwave Technol. 39(13), 4262–4269 (2021)

    Article  ADS  Google Scholar 

  35. Wang, Z., Xiao, Y., Wang, S., Yan, S., Wang, B., Chen, Y., Zhou, Z.: Probabilistic shaping based constellation encryption for physical layer security. Opt. Express 29(12), 17890–17901 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Vikas, K., Mithun, M., Jaime, L.: Reconfigurable architecture of UFMC transmitter for 5G and its FPGA prototype. IEEE Syst. J. 14(1), 28–38 (2020)

    Article  Google Scholar 

  37. Zhong, Q., Ren, J., Liu, B.: High-security UFMC optical transmission system of 7-core fiber based on updating 3D discrete chaotic model. Opt. Express 47(9), 2254–2257 (2022)

    CAS  Google Scholar 

  38. Meng, X., Rozycki, P., Qiao, J., Wilamowski, B.M.: Nonlinear system modeling using RBF networks for industrial application. IEEE Trans. Ind. Inform. 14(3), 931–940 (2018)

    Article  Google Scholar 

  39. Hua, Z., Zhou, Y., Bao, B.: Two-dimensional sine chaotification system with hardware implementation. IEEE Trans. Ind. Inform. 16(2), 887–897 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Grant No.: 61871230, 62371242), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbiao Li.

Ethics declarations

Conflict of interest

The declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, C., Zhong, Q. et al. A memristive chaotic map with only one bifurcation parameter. Nonlinear Dyn 112, 3869–3886 (2024). https://doi.org/10.1007/s11071-023-09204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09204-0

Keywords

Navigation