Skip to main content
Log in

Stochastic dynamics of aircraft ground taxiing via improved physics-informed neural networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the stochastic propagation of the aircraft taxiing under the excitation of uneven runway is investigated based on physics-informed neural networks (PINNs). In particular, we successfully applied the PINNs with layer-wise locally adaptive activation functions (L-LAAF) and the learning rate decay strategy to address the challenging task of parameter identification for some aircraft systems. Specifically, the accuracy and effectiveness of the proposed method in solving the time-dependent Fokker–Planck equation for systems were first demonstrated. Subsequently, the proposed method is effectively utilized to identify the damping coefficient of landing gear and the aircraft body weight. Through numerical experiments and comparisons, we have demonstrated that incorporating L-LAAF and learning rate decay strategies can further enhance the performance of the network. The numerical simulation based on Monte Carlo fully validates the method. The development of physics-based deep learning techniques for aircraft system parameter identification research can help researchers better understand and control the behavior of systems, providing effective solutions for optimizing system design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Michael, F.: Theoretical and experimental principles of landing gear research and development. Luftfahrtforschung 14, 387–419 (1937)

    Google Scholar 

  2. Schlaefke, K.: Buffered and unbuffered impact on landing gear. TB 10, 129–133 (1943)

    Google Scholar 

  3. Schlaefke, K.: On force-deflection diagrams of airplane shock absorber struts. NACA Tech. Memo. 1373, 109–113 (2015)

    Google Scholar 

  4. Milwitzky, B., Cook, F.E.: Analysis of Landing-Gear Behavior. NASA, Washington, D.C. (1953)

    Google Scholar 

  5. Nie, H., Kortum, W.: Analysis for aircraft taxiing at variable velocity on unevenness runway by the power spectral density method. Nanjing Univ. Aeronaut. Astronaut. 17, 64–70 (2000)

    Google Scholar 

  6. Liu, L.: Optimazation of oleo-pneumatic shock absorber of aircraft. Acta Aeronaut. Astronaut. Sin. 13, 206511 (1992)

    Google Scholar 

  7. Hammond, J.K., Harrison, R.F.: Nonstationary response of vehicles on rough ground-a state space approach. J. Dyn. Syst. Meas. Control 103, 245–250 (1981)

    Article  Google Scholar 

  8. Tung, C.C.: The effects of runway roughness on the dynamic response of airplanes. J. Sound Vib. 5, 164–172 (1967)

    Article  ADS  Google Scholar 

  9. Zhang, Z.H., Zhu, S.J., Lou, J.J.: Analysis for Aircraft Taxiing on Unevenness Runway Based on the Hamiltonian Systems. In: The 9th National Conference on Vibration Theory and Application, Hangzhou (2007)

  10. Khatir, S., Tiachacht, S., Le, T.C., et al.: An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates. Compos. Struct. 273, 114287 (2021)

    Article  CAS  Google Scholar 

  11. Alazzawi, O., Wang, D.: Deep convolution neural network for damage identifications based on time-domain PZT impedance technique. J. Mech. Sci. Technol. 35, 1809–1819 (2021)

    Article  Google Scholar 

  12. Ho, L.V., Nguyen, D.H., Mousavi, M., et al.: A hybrid computational intelligence approach for structural damage detection using marine predator algorithm and feedforward neural networks. Compos. Struct. 252, 106568 (2021)

    Article  Google Scholar 

  13. Ho, L.V., Trinh, T.T., De, R.G., et al.: An efficient stochastic-based coupled model for damage identification in plate structures. Eng. Fail. Anal. 131, 105866 (2022)

    Article  Google Scholar 

  14. Wang, S., Wang, H., Zhou, Y., et al.: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching. Measurement 169, 108362 (2021)

    Article  Google Scholar 

  15. Jiang, J., Chen, Z., Wang, Y., et al.: Parameter estimation for PMSM based on a back propagation neural network optimized by chaotic artificial fish swarm algorithm. Int. J. Control. 14, 615–632 (2019)

    Google Scholar 

  16. Chen, Y., Lu, L., Karniadakis, G.E., et al.: Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express. 28, 11618–11633 (2020)

    Article  PubMed  ADS  Google Scholar 

  17. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  18. Xu, Y., Zhang, H., Li, Y.G., Liu, Q., Kurths, J.: Solving Fokker–Planck equation using deep learning. Chaos 30, 013133 (2020)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  19. Zhai, J.Y., Dobson, M., Li, Y.: A deep learning method for solving Fokker–Planck equations. In: The 2nd Mathematical and Scientific Machine Learning Conference, Lausanne (2021)

  20. Wang, S.F., Teng, Y.G., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM. J. Sci. Comput. 43, 3055–3081 (2020)

    Article  MathSciNet  Google Scholar 

  21. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367, 1026–1030 (2020)

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Raissi, M., Wang, Z., Triantafyllou, M.S., Karniadakis, G.E.: Deep learning of vortex-induced vibrations. J. Fluid Mech. 861, 119–137 (2019)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  23. Sun, L., Gao, H., Pan, S., Wang, J.X.: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 361, 112732 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  24. Zhu, Q., Liu, Z., Yan, J.: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput. Mech. 67, 619–635 (2021)

    Article  MathSciNet  Google Scholar 

  25. Shukla, K., Di Leoni, P.C., Blackshire, J., Sparkman, D., Karniadakis, G.E.: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. J. Nondestr. Eval. 39, 1–20 (2020)

    Article  Google Scholar 

  26. Yucesan, Y.A., Viana, F.A.: A physics-informed neural network for wind turbine main bearing fatigue. Int. J. Progn. Health Manag. 11, 17–34 (2020)

    Google Scholar 

  27. Stiasny, J., Misyris, G.S., Chatzivasileiadis, S.: Physics-Informed Neural Networks for Non-linear System Identification applied to Power System Dynamics, Madrid (2021)

  28. Misyris, G.S., Venzke, A., Chatzivasileiadis, S.: Physics-informed neural networks for power systems. In: 2020 IEEE Power and Energy Society General Meeting, Montreal (2020)

  29. Kissas, G., Yang, Y., Hwuang, E., Witschey, W.R., Detre, J.A., Perdikaris, P.: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  30. Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D.E., Kuhl, E.: Physics-informed neural networks for cardiac activation mapping. Front. Phys. 8, 42 (2020)

  31. Jo, H., Son, H., Hwang, H.J., Kim, E.: Deep neural network approach to forward-inverse problems. Math. NA 15, 247 (2020)

    MathSciNet  Google Scholar 

  32. Yu, C.C., Tang, Y.C., Liu, B.D.: An adaptive activation function for multilayer feedforward neural networks. In: 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing (2002)

  33. Shen, Y., Wang, B., Chen, F., Cheng, L.: A new multi-output neural model with tunable activation function and its applications. Neural Process. Lett. 20, 85–104 (2004)

    Article  Google Scholar 

  34. Dushkoff, M., Ptucha, R.: Adaptive activation functions for deep networks. Electron. Imaging 2016, 1–5 (2016)

    Article  Google Scholar 

  35. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109–136 (2020)

    Article  MathSciNet  Google Scholar 

  36. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proc. R. Soc. A. 476, 22–39 (2020)

    Article  MathSciNet  Google Scholar 

  37. Zhang, S., Song, Z.: An ethnic costumes classification model with optimized learning rate. In: Eleventh International Conference on Digital Image Processing, Guangzhou (2019)

  38. Soize, C.: Exact stationary response of multi-dimensional non-linear Hamiltonian dynamical systems under parametric and external stochastic excitations. J. Sound Vib. 149, 1–24 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  39. Zhu, W.Q., Cai, G.Q., Lin, Y.K.: On exact stationary solutions of stochastically perturbed Hamiltonian systems. Probab. Eng. Mech. 5, 84–87 (1990)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 12172286, 11872306]; and the Aeronautical Science Foundation of China [Grant Number 201941053004].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wantao Jia.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jin, Z., Wang, L. et al. Stochastic dynamics of aircraft ground taxiing via improved physics-informed neural networks. Nonlinear Dyn 112, 3163–3178 (2024). https://doi.org/10.1007/s11071-023-09173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09173-4

Keywords

Navigation