Skip to main content
Log in

Large-scale harmonic balance simulations with Krylov subspace and preconditioner recycling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The multi-harmonic balance method combined with numerical continuation provides an efficient framework to compute a family of time-periodic solutions, or response curves, for large-scale, nonlinear mechanical systems. The predictor and corrector steps repeatedly solve a sequence of linear systems that scale by the model size and number of harmonics in the assumed Fourier series approximation. In this paper, a novel Newton–Krylov iterative method is embedded within the multi-harmonic balance and continuation algorithm to efficiently compute the approximate solutions from the sequence of linear systems that arise during the prediction and correction steps. The method recycles, or reuses, both the preconditioner and the Krylov subspace generated by previous linear systems in the solution sequence. A delayed frequency preconditioner refactorizes the preconditioner only when the performance of the iterative solver deteriorates. The GCRO-DR iterative solver recycles a subset of harmonic Ritz vectors to initialize the solution subspace for the next linear system in the sequence. The performance of the iterative solver is demonstrated on two exemplars with contact-type nonlinearities and benchmarked against a direct solver with traditional Newton–Raphson iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during this study are not currently publicly available but will be made available from the corresponding author upon reasonable request.

Code availability

N/A.

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    Google Scholar 

  2. Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures: Essentials, vol. 1. Wiley, New York (1991)

    Google Scholar 

  3. Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures: Advanced Topics, vol. 2. Wiley, New York (1991)

    Google Scholar 

  4. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes. Part I. A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). https://doi.org/10.1016/j.ymssp.2008.04.002

    Article  ADS  Google Scholar 

  5. Vakakis, A.F.: Non-linear normal modes (NNMs) and their applications in vibration theory: an overview. Mech. Syst. Signal Process. 11(1), 3–22 (1997). https://doi.org/10.1006/mssp.1996.9999

    Article  MathSciNet  ADS  Google Scholar 

  6. Thomas, J.P., Dowell, E.H., Hall, K.C.: Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach. J. Aircr. 41(6), 1266–1274 (2004). https://doi.org/10.2514/1.9839

    Article  Google Scholar 

  7. Yao, W., Marques, S.: Prediction of transonic limit-cycle oscillations using an aeroelastic harmonic balance method. AIAA J. 53(7), 2040–2051 (2015). https://doi.org/10.2514/1.J053565

    Article  ADS  Google Scholar 

  8. Nayfeh, A.H., Mook, D.T., Sridhar, S.: Nonlinear analysis of the forced response of structural elements. J. Acoust. Soc. Am. 55(2), 281–291 (1974). https://doi.org/10.1121/1.1914499

    Article  ADS  Google Scholar 

  9. Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86(3), 1493–1534 (2016). https://doi.org/10.1007/s11071-016-2974-z

    Article  MathSciNet  Google Scholar 

  10. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2008)

    Google Scholar 

  11. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems, 1st edn. Springer, Berlin (2019)

    Google Scholar 

  12. Filipov, S.M., Gospodinov, I.D., Faragó, I.: Shooting-projection method for two-point boundary value problems. Appl. Math. Lett. 72, 10–15 (2017)

    MathSciNet  Google Scholar 

  13. Keller, H.B.: Numerical Solution of Two Point Boundary Value Problems. SIAM, Philadelphia (1976)

    Google Scholar 

  14. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)

    MathSciNet  Google Scholar 

  15. Doedel, E.J.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer. 30(265–284), 25–93 (1981)

    MathSciNet  Google Scholar 

  16. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. SIAM, Philadelphia (2003)

    Google Scholar 

  17. Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, Berlin (2009)

    Google Scholar 

  18. Urabe, M.: Galerkin’s procedure for nonlinear periodic systems. Arch. Ration. Mech. Anal. 20(2), 120–152 (1965). https://doi.org/10.1007/BF00284614

    Article  Google Scholar 

  19. Wang, L., Lu, Z.-R., Liu, J.: Convergence rates of harmonic balance method for periodic solution of smooth and non-smooth systems. Commun. Nonlinear Sci. Numer. Simul. 99, 105826 (2021). https://doi.org/10.1016/j.cnsns.2021.105826

    Article  MathSciNet  Google Scholar 

  20. Lu, J., Zhao, X., Yamada, S.: Harmonic Balance Finite Element Method: Applications in Nonlinear Electromagnetics and Power Systems. Wiley, New York (2016)

    Google Scholar 

  21. Kim, Y.B., Noah, S.T.: Bifurcation analysis for a modified Jeffcott rotor with bearing clearances. Nonlinear Dyn. 1(3), 221–241 (1990). https://doi.org/10.1007/BF01858295

    Article  Google Scholar 

  22. Peletan, L., Baguet, S., Jacquet-Richardet, G., Torkhani, M.: Use and limitations of the harmonic balance method for rub-impact phenomena in rotor-stator dynamics. In: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition: Structures and Dynamics, Parts A and B, vol. 7, pp. 647–655 (2012). https://doi.org/10.1115/gt2012-69450

  23. Salles, L., Staples, B., Hoffmann, N., Schwingshackl, C.: Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions. Nonlinear Dyn. 86(3), 1897–1911 (2016). https://doi.org/10.1007/s11071-016-3003-y

    Article  Google Scholar 

  24. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

    ADS  Google Scholar 

  25. Berthold, C., Gross, J., Frey, C., Krack, M.: Development of a fully-coupled harmonic balance method and a refined energy method for the computation of flutter-induced Limit Cycle Oscillations of bladed disks with nonlinear friction contacts. J. Fluids Struct. 102, 103233 (2021)

    ADS  Google Scholar 

  26. Colaïtis, Y., Batailly, A.: The harmonic balance method with arc-length continuation in blade-tip/casing contact problems. J. Sound Vib. 502, 116070 (2021). https://doi.org/10.1016/j.jsv.2021.116070

    Article  Google Scholar 

  27. Firrone, C.M., Zucca, S., Gola, M.M.: The effect of underplatform dampers on the forced response of bladed disks by a coupled static/dynamic harmonic balance method. Int. J. Non-Linear Mech. 46(2), 363–375 (2011)

    ADS  Google Scholar 

  28. Krack, M., Panning-von Scheidt, L., Wallaschek, J., Siewert, C., Hartung, A.: Reduced order modeling based on complex nonlinear modal analysis and its application to bladed disks with shroud contact. J. Eng. Gas Turbines Power (2013). https://doi.org/10.1115/1.4025002

    Article  Google Scholar 

  29. Pesaresi, L., Salles, L., Jones, A., Green, J., Schwingshackl, C.: Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications. Mech. Syst. Signal Process. 85, 662–679 (2017)

    ADS  Google Scholar 

  30. Alcorta, R., Baguet, S., Prabel, B., Piteau, P., Jacquet-Richardet, G.: Period doubling bifurcation analysis and isolated sub-harmonic resonances in an oscillator with asymmetric clearances. Nonlinear Dyn. 98(4), 2939–2960 (2019)

    Google Scholar 

  31. Karkar, S., Cochelin, B., Vergez, C.: A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems. J. Sound Vib. 333(12), 2554–2567 (2014). https://doi.org/10.1016/j.jsv.2014.01.019

    Article  ADS  Google Scholar 

  32. Mélot, A., Rigaud, E., Perret-Liaudet, J.: Bifurcation tracking of geared systems with parameter-dependent internal excitation. Nonlinear Dyn. 107(1), 413–431 (2022)

    Google Scholar 

  33. Vadcard, T., Batailly, A., Thouverez, F.: On Harmonic Balance Method-based Lagrangian contact formulations for vibro-impact problems. J. Sound Vib. 531, 116950 (2022)

    Google Scholar 

  34. Yoon, J.-Y., Kim, B.: Stability and bifurcation analysis of super- and sub-harmonic responses in a torsional system with piecewise-type nonlinearities. Sci. Rep. 11(1), 23601 (2021). https://doi.org/10.1038/s41598-021-03088-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Givois, A., Grolet, A., Thomas, O., Deü, J.-F.: On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models. Nonlinear Dyn. 97(2), 1747–1781 (2019). https://doi.org/10.1007/s11071-019-05021-6

    Article  Google Scholar 

  36. Jacques, N., Daya, E.M., Potier-Ferry, M.: Nonlinear vibration of viscoelastic sandwich beams by the harmonic balance and finite element methods. J. Sound Vib. 329(20), 4251–4265 (2010). https://doi.org/10.1016/j.jsv.2010.04.021

    Article  ADS  Google Scholar 

  37. Opreni, A., Boni, N., Carminati, R., Frangi, A.: Analysis of the nonlinear response of piezo-micromirrors with the harmonic balance method. Actuators 10(2), 21 (2021)

    Google Scholar 

  38. Ribeiro, P., Petyt, M.: Geometrical non-linear, steady state, forced, periodic vibration of plates, part I: model and convergence studies. J. Sound Vib. 226(5), 955–983 (1999). https://doi.org/10.1006/jsvi.1999.2306

    Article  ADS  Google Scholar 

  39. Van Damme, C.I., Allen, M.S., Hollkamp, J.J.: Updating geometrically nonlinear reduced-order models using nonlinear modes and harmonic balance. AIAA J. 58(8), 3553–3568 (2020)

    ADS  Google Scholar 

  40. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989). https://doi.org/10.1115/1.3176036

    Article  MathSciNet  ADS  Google Scholar 

  41. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015). https://doi.org/10.1016/j.cma.2015.07.017

    Article  MathSciNet  ADS  Google Scholar 

  42. Narayanan, S., Sekar, P.: A frequency domain based numeric–analytical method for non-linear dynamical systems. J. Sound Vib. 211(3), 409–424 (1998). https://doi.org/10.1006/jsvi.1997.1319

    Article  ADS  Google Scholar 

  43. Xie, G., Lou, J.Y.K.: Alternating frequency/coefficient (AFC) technique in the trigonometric collocation method. Int. J. Non-Linear Mech. 31(4), 531–545 (1996). https://doi.org/10.1016/0020-7462(96)00003-0

    Article  MathSciNet  ADS  Google Scholar 

  44. Petrov, E., Ewins, D.: Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks. J. Turbomach. 125(2), 364–371 (2003)

    Google Scholar 

  45. Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016). https://doi.org/10.1016/j.jsv.2015.09.033

    Article  ADS  Google Scholar 

  46. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Google Scholar 

  47. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Google Scholar 

  48. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004). https://doi.org/10.1016/j.jcp.2003.08.010

    Article  MathSciNet  ADS  Google Scholar 

  49. Kouhia, R., Mikkola, M.: Some aspects on efficient path-following. Comput. Struct. 72(4–5), 509–524 (1999)

    Google Scholar 

  50. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    MathSciNet  ADS  Google Scholar 

  51. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182(2), 418–477 (2002)

    MathSciNet  ADS  Google Scholar 

  52. Rizzoli, V., Mastri, F., Cecchetti, C., Sgallari, F.: Fast and robust inexact Newton approach to the harmonic-balance analysis of nonlinear microwave circuits. IEEE Microwave Guided Wave Lett. 7(10), 359–361 (1997)

    Google Scholar 

  53. Rizzoli, V., Mastri, F., Sgallari, F., Spaletta, G.: Harmonic-balance simulation of strongly nonlinear very large-size microwave circuits by inexact Newton methods. In: 1996 IEEE MTT-S International Microwave Symposium Digest, vol. 3: IEEE, pp. 1357–1360 (1996)

  54. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    MathSciNet  Google Scholar 

  55. Rhodes, D. L., Gerasoulis, A.: Scalable parallelization of harmonic balance simulation. In: International Parallel Processing Symposium. Springer, pp. 1055--1064 (1999)

  56. Rhodes, D.L., Perlman, B.S.: Parallel computation for microwave circuit simulation. IEEE Trans. Microw. Theory Tech. 45(5), 587–592 (1997)

    ADS  Google Scholar 

  57. Dong, W., Li, P.: A parallel harmonic-balance approach to steady-state and envelope-following simulation of driven and autonomous circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(4), 490–501 (2009)

    Google Scholar 

  58. Soveiko, N., Nakhla, M.S., Achar, R.: Comparison study of performance of parallel steady state solver on different computer architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(1), 65–77 (2009)

    Google Scholar 

  59. Soveiko, N., Nakhla, M., Achar, R., Gad, E.: Scalable parallel matrix solver for steady state analysis of large nonlinear circuits. In: 2008 IEEE MTT-S International Microwave Symposium Digest. IEEE, pp. 1401–1404 (2008)

  60. Mehrotra, A., Somani, A.: A robust and efficient harmonic balance (HB) using direct solution of HB Jacobian. In: Proceedings of the 46th Annual Design Automation Conference, pp. 370–375 (2009)

  61. Yao, W., Jin, J.M., Krein, P.T.: A 3D finite element analysis of large-scale nonlinear dynamic electromagnetic problems by harmonic balancing and domain decomposition. Int. J. Numer. Model. Electron. Networks Devices Fields 29(2), 166–180 (2016)

    Google Scholar 

  62. Han, L., Zhao, X., Feng, Z.: An adaptive graph sparsification approach to scalable harmonic balance analysis of strongly nonlinear post-layout RF circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(2), 173–185 (2015). https://doi.org/10.1109/TCAD.2014.2376991

    Article  Google Scholar 

  63. Sánchez, J., Net, M., Garcıa-Archilla, B., Simó, C.: Newton–Krylov continuation of periodic orbits for Navier–Stokes flows. J. Comput. Phys. 201(1), 13–33 (2004)

    MathSciNet  ADS  Google Scholar 

  64. Net, M., Sánchez, J.: Continuation of bifurcations of periodic orbits for large-scale systems. SIAM J. Appl. Dyn. Syst. 14(2), 674–698 (2015)

    MathSciNet  Google Scholar 

  65. Waugh, I., Illingworth, S., Juniper, M.: Matrix-free continuation of limit cycles for bifurcation analysis of large thermoacoustic systems. J. Comput. Phys. 240, 225–247 (2013)

    MathSciNet  ADS  Google Scholar 

  66. Formica, G., Milicchio, F., Lacarbonara, W.: A Krylov accelerated Newton-Raphson scheme for efficient pseudo-arclength pathfollowing. Int. J. Non-Linear Mech. 145, 104116 (2022)

    ADS  Google Scholar 

  67. Sierra, J., Jolivet, P., Giannetti, F., Citro, V.: Adjoint-based sensitivity analysis of periodic orbits by the Fourier-Galerkin method. J. Comput. Phys. 440, 110403 (2021)

    MathSciNet  Google Scholar 

  68. He, S., Jonsson, E., Mader, C.A., Martins, J.R.: Coupled Newton–Krylov time-spectral solver for flutter and limit cycle oscillation prediction. AIAA J. 59(6), 2214–2232 (2021)

    CAS  ADS  Google Scholar 

  69. Zhou, D., Lu, Z., Guo, T., Chen, G.: On the performance of harmonic balance method for unsteady flow with oscillating shocks. Phys. Fluids 32(12), 126103 (2020)

    CAS  ADS  Google Scholar 

  70. Blahoš, J., Vizzaccaro, A., Salles, L., El Haddad, F.: Parallel harmonic balance method for analysis of nonlinear dynamical systems. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84232: American Society of Mechanical Engineers, p. V011T30A028 (2020)

  71. Jenovencio, G., Sivasankar, A., Saeed, Z., Rixen, D.: An delayed frequency preconditioner approach for speeding-up frequency response computation of structural components. In: XI International Conference on Structural Dynamics (2020)

  72. Parks, M.L., De Sturler, E., Mackey, G., Johnson, D.D., Maiti, S.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28(5), 1651–1674 (2006)

    MathSciNet  Google Scholar 

  73. Bolten, M., Božović, N., Frommer, A.: Preconditioning of Krylov subspace methods using recycling in Lattice QCD computations. PAMM 13(1), 413–414 (2013)

    Google Scholar 

  74. Feng, L., Benner, P., Korvink, J.G.: Subspace recycling accelerates the parametric macro-modeling of MEMS. Int. J. Numer. Meth. Eng. 94(1), 84–110 (2013)

    Google Scholar 

  75. Keuchel, S., Biermann, J., Gehlken, M., von Estorff, O.: Speed up of 3D-acoustics in frequency domain by the Fast Multipole Method in combination with Krylov Subspace Recycling based iterative solvers. In: AIA-DAGA 2013 Conference on Acoustics, EAA Euroregio/EAA Winter School, pp. 18–21 (2013)

  76. Xu, S., Timme, S., Badcock, K.J.: Enabling off-design linearised aerodynamics analysis using Krylov subspace recycling technique. Comput. Fluids 140, 385–396 (2016)

    MathSciNet  Google Scholar 

  77. Yetkin, E.F., Ceylan, O.: Recycling Newton–Krylov algorithm for efficient solution of large scale power systems. Int. J. Electr. Power Energy Syst. 144, 108559 (2023)

    Google Scholar 

  78. Zhu, L., et al.: GCRO-DR method for solving three-dimensional electromagnetic wave scattering. In: 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI). IEEE, pp. 1530–1531 (2022)

  79. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009). https://doi.org/10.1016/j.ymssp.2008.04.003

    Article  ADS  Google Scholar 

  80. Watkins, D.S.: Fundamentals of Matrix Computations. Wiley, New York (2004)

    Google Scholar 

  81. An, H.-B., Mo, Z.-Y., Liu, X.-P.: A choice of forcing terms in inexact Newton method. J. Comput. Appl. Math. 200(1), 47–60 (2007). https://doi.org/10.1016/j.cam.2005.12.030

    Article  MathSciNet  ADS  Google Scholar 

  82. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)

    MathSciNet  Google Scholar 

  83. Soodhalter, K.M., de Sturler, E., Kilmer, M.E.: A survey of subspace recycling iterative methods. GAMM-Mitteilungen 43(4), e202000016 (2020). https://doi.org/10.1002/gamm.202000016

    Article  MathSciNet  Google Scholar 

  84. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/10.1137/s1064827595287997

    Article  MathSciNet  Google Scholar 

  85. Wriggers, P., Van Vu, T., Stein, E.: Finite element formulation of large deformation impact-contact problems with friction. Comput. Struct. 37(3), 319–331 (1990). https://doi.org/10.1016/0045-7949(90)90324-U

    Article  Google Scholar 

  86. Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multibody Sys.Dyn. 40(4), 407–436 (2017). https://doi.org/10.1007/s11044-016-9555-2

    Article  MathSciNet  Google Scholar 

  87. Craig, R.R.J., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741

    Article  ADS  Google Scholar 

  88. Hurty, W.C.: Vibrations of structural systems by component mode synthesis. J. Eng. Mech. Div. 86(4), 51–70 (1960)

    Google Scholar 

  89. Pacini, B.R., Kuether, R.J., Roettgen, D.R.: Shaker-structure interaction modeling and analysis for nonlinear force appropriation testing. Mech. Syst. Signal Process. 162, 108000 (2022). https://doi.org/10.1016/j.ymssp.2021.108000

    Article  Google Scholar 

  90. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. (TOMS) 35(3), 1–14 (2008)

    MathSciNet  CAS  Google Scholar 

  91. CUBIT Development Team: CUBIT 15.6 User Documentation, SAND2020-4156 W, Sandia National Laboratories, Albuquerque, NM, (2020)

  92. Sierra Structural Dynamics Development Team: Sierra/SD User's Manual 5.8, SAND2022-8168, Sandia National Laboratories, Albuquerque, NM (2022)

  93. Zucca, S., Firrone, C.M.: Nonlinear dynamics of mechanical systems with friction contacts: coupled static and dynamic Multi-Harmonic Balance Method and multiple solutions. J. Sound Vib. 333(3), 916–926 (2014). https://doi.org/10.1016/j.jsv.2013.09.032

    Article  ADS  Google Scholar 

  94. Davis, T.A.: Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. (TOMS) 30(2), 196–199 (2004)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The authors would like to thank Christopher Van Damme for the many technical discussions and suggestions regarding multi-harmonic balance. The authors appreciate discussions with Daniel Rixen who suggested the idea to explore subspace recycling concepts within iterative solvers. Finally, the authors would like to thank Mike Parks for his help understanding and deploying the GCRO-DR solver.

Funding

Provided in submission.

Author information

Authors and Affiliations

Authors

Contributions

Provided in submission.

Corresponding author

Correspondence to Robert J. Kuether.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuether, R.J., Steyer, A. Large-scale harmonic balance simulations with Krylov subspace and preconditioner recycling. Nonlinear Dyn 112, 3377–3398 (2024). https://doi.org/10.1007/s11071-023-09171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09171-6

Keywords

Navigation