Skip to main content
Log in

Effects of experts on the coupling dynamics of complex contagion of awareness and epidemic spreading

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The impact of social influence on the dynamic of awareness diffusion and epidemic spreading has been researched adequately, while the feedback effect of individuals on social influence does not receive enough attention. In this study, we sought to propose a model composed of a two-layer network with complex awareness. Initially, we design expert nodes based on regret theory to characterize social influence and symmetrical interaction, including the impact of experts and the feedback of individuals. Then, we describe the social structure in the form of the simple contagion model and consider the superposition effect. According to the microscopic Markov chain approach (MMCA) derivation, a clear association emerges between epidemic threshold and complex awareness diffusion. Extensive numerical simulations reveal two implications: (1) Widening the channels of information dissemination could contribute to epidemic prevention; (2) Intensifying the recurrent diffusion of complex social awareness is beneficial to epidemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analysed in this study.

References

  1. Dezső, Z., Barabási, A.-L.: Halting viruses in scale-free networks. Phys. Rev. E 65(5), 055103 (2002)

    Article  Google Scholar 

  2. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  3. Boguñá, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66(4), 047104 (2002)

    Article  Google Scholar 

  4. Tran, V.T., Nguyen, T.K., Nguyen-Xuan, H., Wahab, M.A.: Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm. Thin-Walled Struct. 182, 110267 (2023)

    Article  Google Scholar 

  5. Dang, B.L., Nguyen-Xuan, H., Wahab, M.A.: An effective approach for VARANS-VOF modelling interactions of wave and perforated breakwater using gradient boosting decision tree algorithm. Ocean Eng. 268, 113398 (2023)

    Article  Google Scholar 

  6. Wang, S., Wang, H., Zhou, Y., Liu, J., Dai, P., Du, X., Wahab, M.A.: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching. Measurement 169, 108362 (2021)

    Article  Google Scholar 

  7. Zhang, L., Jin, Q., Fan, S., Liu, D.: A novel dual-center based intuitionistic Fuzzy twin bounded large margin distribution machines. IEEE Trans. Fuzzy Syst. 31(9), 3121–3134 (2023)

    Article  Google Scholar 

  8. Zhang, L.B., Yu, Z.H., Wu, S.Y., Zhu, H.B., Sheng, Y.: Adaptive collaboration with training plan considering role correlation. IEEE Trans. Comput. Soc. Syst. (2022). https://doi.org/10.1109/TCSS.2022.3204052

    Article  Google Scholar 

  9. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Article  MathSciNet  Google Scholar 

  10. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E. 63(6), 066117 (2001)

    Article  Google Scholar 

  11. Kaye, P.M.: Infectious diseases of humans: dynamics and control. Immunol. Today 14(12), 616 (1993)

    Article  Google Scholar 

  12. Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S., Moreno, Y.: Discrete-time Markov chain approach to contact-based disease spreading in complex networks. Europhys. Lett. 89(3), 38009 (2010)

    Article  Google Scholar 

  13. Li, C., Wang, H., Van Mieghem, P.: Epidemic threshold in directed networks. Phys. Rev. E 88(6), 062802 (2013)

    Article  Google Scholar 

  14. Karrer, B., Newman, M.E.J.: Message passing approach for general epidemic models. Phys. Rev. E 82(1), 016101 (2010)

    Article  MathSciNet  Google Scholar 

  15. Shrestha, M., Scarpino, S.V., Moore, C.: Message-passing approach for recurrent-state epidemic models on networks. Phys. Rev. E 92(2), 022821 (2015)

    Article  Google Scholar 

  16. Wang, W., Liu, Q.-H., Zhong, L.-F., Tang, M., Gao, H., Stanley, H.E.: Predicting the epidemic threshold of the susceptible-infected-recovered model. Sci. Rep. 6(1), 24676 (2016)

    Article  Google Scholar 

  17. Wang, J., Li, C., Xia, C.: Improved centrality indicators to characterize the nodal spreading capability in complex networks. Appl. Math. Comput. 334, 388–400 (2018)

    MathSciNet  Google Scholar 

  18. Li, C., Wang, L., Sun, S., Xia, C.: Identification of influential spreaders based on classified neighbors in real-world complex networks. Appl. Math. Comput. 320, 512–523 (2018)

    Article  MathSciNet  Google Scholar 

  19. Funk, S., Gilad, E., Watkins, C., Jansen, V.A.: The spread of awareness and its impact on epidemic outbreaks. Proc. Nat. Acad. Sci. 106(16), 6872–6877 (2009)

    Article  Google Scholar 

  20. Ruan, Z., Tang, M., Liu, Z.: Epidemic spreading with information-driven vaccination. Phys. Rev. E 86(3), 036117 (2012)

    Article  Google Scholar 

  21. Granell, C., Gómez, S., Arenas, A.: Dynamical Interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111(12), 128701 (2013)

  22. Zhang, L., Guo, C., Feng, M.: Effect of local and global information on the dynamical interplay between awareness and epidemic transmission in multiplex networks. Chaos: An Interdiscip. J. Nonlinear Sci. 32(8), 083138 (2022)

  23. Zhan, X.-X., Liu, C., Zhou, G., Zhang, Z.-K., Sun, G.-Q., Zhu, J.J.H., Jin, Z.: Coupling dynamics of epidemic spreading and information diffusion on complex networks. Appl. Math. Comput. 332, 437–448 (2018)

    MathSciNet  Google Scholar 

  24. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Nat. Acad. Sci. 106(51), 21484–21489 (2009)

    Article  Google Scholar 

  25. Ruan, Z., Hui, P., Lin, H., Liu, Z.: Risks of an epidemic in a two-layered railway-local area traveling network. The Eur. Phys. J. B. 86, 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  26. Ruan, Z., Wang, C., Ming Hui, P., Liu, Z.: Integrated travel network model for studying epidemics: interplay between journeys and epidemic. Sci. Rep. 5(1), 11401 (2015)

    Article  Google Scholar 

  27. Li, Y., Zeng, Z., Feng, M., Kurths, J.: Protection degree and migration in the stochastic SIRS model: a queueing system perspective. IEEE Trans. Circ. Syst. I Regul. Pap. 69(2), 771–783 (2021)

    Article  Google Scholar 

  28. Li, Q., Chen, H., Li, Y., Feng, M., Kurths, J.: Network spreading among areas: a dynamical complex network modeling approach. Chaos: An Interdiscip. J. Nonlinear Sci. 32(10), 103102 (2022)

    Article  MathSciNet  Google Scholar 

  29. Sun, C., Yang, W., Arino, J., Khan, K.: Effect of media-induced social distancing on disease transmission in a two patch setting. Math. Biosci. 230(2), 87–95 (2011)

    Article  MathSciNet  Google Scholar 

  30. Cai, Y., Kang, Y., Banerjee, M., Wang, W.: A stochastic epidemic model incorporating media coverage. Commun. Math. Sci. 14(4), 893–910 (2016)

    Article  MathSciNet  Google Scholar 

  31. Granell, C., Gómez, S., Arenas, A.: Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E 90(1), 012808 (2014)

    Article  Google Scholar 

  32. Wu, Q., Fu, X., Small, M., Xu, X.J.: The impact of awareness on epidemic spreading in networks. Chaos: An Interdiscip. J. Nonlinear Sci. 22(1), 013101 (2012)

    Article  MathSciNet  Google Scholar 

  33. Wang, Z., Guo, Q., Sun, S., Xia, C.: The impact of awareness diffusion on SIR-like epidemics in multiplex networks. Appl. Math. Comput. 349, 134–147 (2019)

    MathSciNet  Google Scholar 

  34. Liu, Q.H., Wang, W., Tang, M., Zhang, H.F.: Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks. Sci. Rep. 6(1), 25617 (2016)

    Article  Google Scholar 

  35. Huang, H., Chen, Y., Yan, Z.: Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model. Appl. Math. Comput. 398, 125983 (2021)

    MathSciNet  Google Scholar 

  36. Iacopini, I., Petri, G., Barrat, A., Latora, V.: Simplicial models of social contagion. Nat. Commun. 10(1), 2485 (2019)

    Article  Google Scholar 

  37. Wang, Y., Wang, L.: Interplay between complex contagion of awareness and epidemic spreading in two-layer network. In: 2020 39th Chinese Control Conference (CCC) (pp. 765-770). IEEE (2020)

  38. Wang, T., Li, H., Qian, Y., Huang, B., Zhou, X.: A regret-based three-way decision model under interval type-2 fuzzy environment. IEEE Trans. Fuzzy Syst. 30(1), 175–189 (2020)

  39. Bleichrodt, H., Cillo, A., Diecidue, E.: A quantitative measurement of regret theory. Manage. Sci. 56(1), 161–175 (2010)

    Article  Google Scholar 

  40. Wang, J., Ma, X., Xu, Z., Zhan, J.: Regret theory-based three-way decision model in hesitant fuzzy environments and its application to medical decision. IEEE Trans. Fuzzy Syst. 30(12), 5361–5375 (2022)

    Article  Google Scholar 

  41. Liew, K.M., Akbar, A.: The recent progress of recycled steel fiber reinforced concrete. Constr. Build. Mater. 232, 117232 (2020)

    Article  Google Scholar 

  42. Gale, C.M., Eikeseth, S., Klintwall, L.: Children with autism show atypical preference for non-social stimuli. Sci. Rep. 9(1), 10355 (2019)

  43. Hébert-Dufresne, L., Scarpino, S.V., Young, J.G.: Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement. Nat. Phys. 16(4), 426–431 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62106205), Natural Science Foundation of Chongqing (Nos. cstc2021jcyj-msxmX0824 and cstc2021jcyj-msxmX0565), the Humanities and Social Science Fund Ministry of Education of the People’s Republic of China under Grant (No. 21YJCZH028), and the project of science and technology research program of Cho-ngqing Education Commission of China (Nos. KJQN202100207 and KJZD-K202100203).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Wang, Y., Guo, C. et al. Effects of experts on the coupling dynamics of complex contagion of awareness and epidemic spreading. Nonlinear Dyn 112, 2367–2380 (2024). https://doi.org/10.1007/s11071-023-09146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09146-7

Keywords

Navigation