Skip to main content
Log in

Robust approximate constraint-following control design based on Udwadia–Kalaba approach and experimental validation for the joint module of cooperative robot

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The joint module is an essential energy source for cooperative robots. Its dynamic performance has a direct influence on the total control effect. In order to reduce the impact of uncertain factors on the dynamic performance of cooperative robots, a robust approximate constraint-following control (RACFC) algorithm based on the Udwadia–Kalaba (U–K) approach is developed in this paper to achieve the trajectory tracking of joint modules, which is a vital part of cooperative robot action. Considering the external interference and uncertainty of system parameters, we design the controller with three parts: the nominal part inhibits any trend to deviate from the constraints; the second part solves the incompatibility problem of initial conditions; and the robust part compensates for the effects of possible uncertainty. Finally, by connecting the joint module of the cooperative robot with the rapid controller prototype CSPACE, simulation and experimental validation with two different friction models are carried out, demonstrating that the designed control can remarkably enhance the system performance of joint modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Matheson, E., Minto, R., Zampieri, E.G., Faccio, M., Rosati, G.: Human-robot collaboration in manufacturing applications: a review. Robotics 8(4), 100 (2019)

    Article  Google Scholar 

  2. Rahman, M.A., Zhou, P.: Analysis of brushless permanent magnet synchronous motors. IEEE Trans. Ind. Electron. 43(2), 256–267 (1996)

    Article  Google Scholar 

  3. Ping, Z., Ma, Q., Wang, T., Huang, Y., Lu, J.-G.: Speed tracking control of permanent magnet synchronous motor by a novel two-step internal model control approach. Int. J. Control Autom. Syst. 16, 2754–2762 (2018)

    Article  Google Scholar 

  4. Ang, K.H., Chong, G., Li, Y.: Pid control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)

    Article  Google Scholar 

  5. Alvarez-Ramirez, J., Santibanez, V., Campa, R.: Stability of robot manipulators under saturated pid compensation. IEEE Trans. Control Syst. Technol. 16(6), 1333–1341 (2008)

    Article  Google Scholar 

  6. Junejo, A.K., Xu, W., Mu, C., Ismail, M.M., Liu, Y.: Adaptive speed control of pmsm drive system based a new sliding-mode reaching law. IEEE Trans. Power Electron. 35(11), 12110–12121 (2020)

    Article  Google Scholar 

  7. Zuo, Z., Wang, C.: Adaptive trajectory tracking control of output constrained multi-rotors systems. IET Control Theory Appl. 8(13), 1163–1174 (2014)

    Article  Google Scholar 

  8. Rahman, M.Z.U., Leiva, V., Martin-Barreiro, C., Mahmood, I., Usman, M., Rizwan, M.: Fractional transformation-based intelligent h-infinity controller of a direct current servo motor. Fractal Fract. 7(1), 29 (2023)

    Article  Google Scholar 

  9. Rigatos, G., Abbaszadeh, M.: Nonlinear optimal control for multi-dof robotic manipulators with flexible joints. Optim. Control Appl. Methods 42(6), 1708–1733 (2021)

    Article  Google Scholar 

  10. Xu, L., Yao, B.: Adaptive robust control of mechanical systems with non-linear dynamic friction compensation. Int. J. Control 81(2), 167–176 (2008)

    Article  MathSciNet  Google Scholar 

  11. Zhang, J., Ren, W., Sun, X.-M.: Current-constrained adaptive robust control for uncertain pmsm drive systems: Theory and experimentation. IEEE Transactions on Transportation Electrification (2023)

  12. Hou, H., Yu, X., Xu, L., Rsetam, K., Cao, Z.: Finite-time continuous terminal sliding mode control of servo motor systems. IEEE Trans. Ind. Electron. 67(7), 5647–5656 (2019)

    Article  Google Scholar 

  13. Zaihidee, F.M., Mekhilef, S., Mubin, M.: Application of fractional order sliding mode control for speed control of permanent magnet synchronous motor. IEEE Access 7, 101765–101774 (2019)

    Article  Google Scholar 

  14. Urrea, C., Kern, J., Alvarado, J.: Design and evaluation of a new fuzzy control algorithm applied to a manipulator robot. Appl. Sci. 10(21), 7482 (2020)

    Article  Google Scholar 

  15. Zhou, H., Chen, R., Zhou, S., Liu, Z.: Design and analysis of a drive system for a series manipulator based on orthogonal-fuzzy pid control. Electronics 8(9), 1051 (2019)

    Article  Google Scholar 

  16. Yang, C., Huang, D., He, W., Cheng, L.: Neural control of robot manipulators with trajectory tracking constraints and input saturation. IEEE Trans. Neural Netw. Learn. Syst. 32(9), 4231–4242 (2020)

    Article  MathSciNet  Google Scholar 

  17. Huang, D., Yang, C., Pan, Y., Cheng, L.: Composite learning enhanced neural control for robot manipulator with output error constraints. IEEE Trans. Ind. Inform. 17(1), 209–218 (2019)

    Article  Google Scholar 

  18. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. London Ser. A Math. Phys. Sci. 439(1906), 407–410 (1992)

    MathSciNet  Google Scholar 

  19. Kirgetov, V.: The motion of controlled mechanical systems with prescribed constraints (servoconstraints): Pmm vol. 31, no. 3, 1967, pp. 433–446. J. Appl. Math. Mech. 31(3), 465–477 (1967)

    Article  MathSciNet  Google Scholar 

  20. Udwadia, F.E., Kalaba, R.E.: Nonideal constraints and lagrangian dynamics. J. Aerosp. Eng. 13(1), 17–22 (2000)

    Article  Google Scholar 

  21. Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-linear Mech. 37(6), 1079–1090 (2002)

    Article  MathSciNet  Google Scholar 

  22. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2097), 2341–2363 (2008)

    MathSciNet  Google Scholar 

  23. Chen, Y.-H.: Approximate constraint-following of mechanical systems under uncertainty. Nonlinear Dyn. Syst. Theory 8(4), 329–337 (2008)

    MathSciNet  Google Scholar 

  24. Chen, Y.-H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15(3), 369–389 (2009)

    Article  MathSciNet  Google Scholar 

  25. Chen, Y.-H., Zhang, X.: Adaptive robust approximate constraint-following control for mechanical systems. J. Franklin Inst. 347(1), 69–86 (2010)

    Article  MathSciNet  Google Scholar 

  26. Wanichanon, T., Cho, H., Udwadia, F.E.: Satellite formation-keeping using the fundamental equation in the presence of uncertainties in the system. In: AIAA SPACE 2011 Conference & Exposition, p. 7210 (2011)

  27. Udwadia, F.E., Wanichanon, T.: A closed-form approach to tracking control of nonlinear uncertain systems using the fundamental equation. In: Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments, pp. 1339–1348 (2012)

  28. Udwadia, F.E., Wanichanon, T.: A new approach to the tracking control of uncertain nonlinear multi-body mechanical systems. In: Nonlinear Approaches in Engineering Applications 2, pp. 101–136 (2013)

  29. Wanichanon, T., Cho, H., Udwadia, F.E.: An approach to the dynamics and control of uncertain multi-body systems. Procedia IUTAM 13, 43–52 (2015)

    Article  Google Scholar 

  30. Bajodah, A.H., Hodges, D.H., Chen, Y.-H.: Inverse dynamics of servo-constraints based on the generalized inverse. Nonlinear Dyn. 39, 179–196 (2005)

    Article  MathSciNet  Google Scholar 

  31. Schutte, A.D.: Permissible control of general constrained mechanical systems. J. Franklin Inst. 347(1), 208–227 (2010)

    Article  MathSciNet  Google Scholar 

  32. Cho, H., Wanichanon, T., Udwadia, F.E.: Continuous sliding mode controllers for multi-input multi-output systems. Nonlinear Dyn. 94(4), 2727–2747 (2018)

    Article  Google Scholar 

  33. Cho, H., Udwadia, F.E., Wanichanon, T.: Autonomous precision control of satellite formation flight under unknown time-varying model and environmental uncertainties. J. Astronaut. Sci. 67, 1470–1499 (2020)

    Article  Google Scholar 

  34. Udwadia, F.E.: On constrained motion. Appl. Math. Comput. 164(2), 313–320 (2005)

    MathSciNet  Google Scholar 

  35. Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. Numer. Algebra Control Optim. 3(3), 425–443 (2013)

    Article  MathSciNet  Google Scholar 

  36. Chen, Y.-H.: Equations of motion of constrained mechanical systems: given force depends on constraint force. Mechatronics 9(4), 411–428 (1999)

    Article  Google Scholar 

  37. Chen, Y.-H.: Second-order constraints for equations of motion of constrained systems. IEEE/ASME Trans. Mechatron. 3(3), 240–248 (1998)

    Article  Google Scholar 

  38. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge, UK (1996)

    Book  Google Scholar 

  39. Penrose, R.: A generalized inverse for matrices. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, pp. 406–413. Cambridge University Press

  40. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394–395 (1920)

    Google Scholar 

  41. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)

    MathSciNet  Google Scholar 

Download references

Funding

The research is supported by the National Natural Science Foundation of China (52305084 and 52175083), the Natural Science Foundation of Anhui Province (2308085QE161), the Department of Education of Anhui Province (KJ2021A0050), the Fundamental Research Funds for the Central Universities (PA2021KCPY0035), Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University (Grant No. TLXYCHR-O-21ZD01), University Synergy Innovation Program of Anhui Province (Program GXXT-2021-010) and Key Research and Development Program of AnHui Province (2022a05020014).

Author information

Authors and Affiliations

Authors

Contributions

YHC, SZ, XL and XM conceived and designed the study. The data collection and analysis were completed by GM and XM. SZ and XM wrote this article.

Corresponding author

Correspondence to XiaoLi Liu.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhen, S., Liu, X. et al. Robust approximate constraint-following control design based on Udwadia–Kalaba approach and experimental validation for the joint module of cooperative robot. Nonlinear Dyn 112, 1931–1949 (2024). https://doi.org/10.1007/s11071-023-09133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09133-y

Keywords

Navigation