Skip to main content
Log in

Novel evolutionary behaviors of \(\pmb {N}\)-soliton solutions for the (3+1)-dimensional generalized Camassa–Holm–Kadomtsev–Petciashvili equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this work is to explore novel evolutionary behaviors of N-soliton solutions for the (3+1)-dimensional generalized Camassa–Holm–Kadomtsev–Petciashvili (gCH-KP) equation, which is proposed to describe the role of dispersion in the formation of patterns in liquid drops. Resonant soliton solutions composed of soliton molecules and Y-type soliton solutions are constructed by introducing appropriate condition to N-soliton solutions. High-order breather solutions are generated with the complex conjugate relation of the parameters of N-soliton solutions, and rational breather solution is obtained by breather limit method. Moreover, a variety of hybrid solutions are derived by combining with resonant condition, long-wave limit approach and parameter complexification method, which contain soliton molecule, Y-type soliton, high-order breathers, lump soliton and their interaction diagrams are simulated explicitly. These received results greatly enrich the solutions and nonlinear dynamical behaviors of gCH-KP equation, and it could be helpful for understanding in nonlinear partial differential equation deeply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article, and the figures are concrete expression.

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the inverse scattering transform. SIAM (1981)

  2. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univesity Press, Cambridge (2004)

    Google Scholar 

  3. Gao, X.Y.: Bäcklund trans form and shock-wave-type solutions for ageneralized (3+1)-dimensional variable coefficient B-type Kadomtsev-Petviashvili equation in fluid mechanics. Ocean Eng. 96, 245–247 (2015)

    Google Scholar 

  4. Ali, N., Asghar, Z., Sajid, M., Bég, O.A.: Biological interactions between carreau fluid and microswimmers in a complex wavy canal with MHD effects. J. Braz. Soc. Mech. Sci. 41, 1–13 (2019)

    Google Scholar 

  5. Asghar, Z., Ali, N., Javid, K., Waqas, M., Khan, W.-A.: Dynamical interaction effects on soft-bodied organisms in a multi-sinusoidal passage. Eur. Phys. J. Plus 136, 1–17 (2021)

    Google Scholar 

  6. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)

    Google Scholar 

  7. Masood, W., Rizvi, H.: Two dimensional nonplanar evolution of electrostatic shock waves in pair-ion plasmas. Phys. Plasmas 19, 012119 (2012)

    Google Scholar 

  8. Prathap Kumar, J., Umavathi, J.C., Kalyan, S.: Free convective flow of immiscible permeable fluids in a vertical channel with first order chemical reaction. Int. Res. J. Eng. Technol. 02(02), 861–873 (2015)

    Google Scholar 

  9. Sharan, A., Kalyan, S., Chamkha, A.J.: Effect of jeffrey fluid fellow and first order chemical reaction on magneto convection of immiscible fluids in a perpendicular passage. Research Square (preprint)

  10. Asghar, Z., Waqas, M., Gondal, M.-A., Khan, W.-A.: Electro-osmotically driven generalized Newtonian blood flow in a divergent micro-channel. Alex. Eng. J. 61, 4519–4528 (2022)

    Google Scholar 

  11. Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241–261 (2016)

    MathSciNet  Google Scholar 

  12. Chen, S.S., Tian, B., Qu, Q.X., Li, H., Sun, Y., Du, X.X.: Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma. Chaos Solitons Fractals 148, 111029 (2021)

    Google Scholar 

  13. Prathap Kumar, J., Umavathi, J.C., Kalyan, S.: Chemical reaction effects on mixed convection flow of two immiscible viscous fluids in a vertical channel. HMMT 2(2), 28–46 (2014)

    Google Scholar 

  14. Prathap Kumar, J., Umavathi, J.C.: Effect of chemical reaction of mixed convective flow in a vertical channel containing porous and fluid layers. J. Porous Med. 20(11), 1043–1058 (2017)

    Google Scholar 

  15. Kumar, J.P., Umavathi, J.C., Kalyan, S.: Free convective flow of electrically conducting and viscous immiscible fluid flow in a vertical channel in the presence of first-order chemical reaction. Heat Transf. Asian Res. 44(7), 657–680 (2015)

    Google Scholar 

  16. Horita, R.: Exact \(N\)-soliton solutions of the wave of long waves in shallow water and in nonlinear lattices. J. Math. Phys. 14(7), 810 (1973)

    MathSciNet  Google Scholar 

  17. Zhang, R.F., Li, M.C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637–8646 (2023)

    Google Scholar 

  18. Yuan, F., Cheng, Y., He, J.S.: Degeneration of breathers in the Kadomtsev-Petviashvili I equation. Commu. Nonlinear Sci. Numer. Simul. 83, 105027 (2019)

    Google Scholar 

  19. Guo, H.D., Xia, T.C., Hu, B.B.: High-order lumps, high-order breathers and hybrid solutions for an extend (3+1)-dimensional Jimbo-Miwa equation in fluid dynamics. Nonlinear Dyn. 100(1), 601–614 (2020)

    Google Scholar 

  20. Li, L.X.: Degeneration of solitons for a (3+1)-dimensional generalized nonlinear evolution equation for shallow water waves. Nonlinear Dyn. 108, 1627–1640 (2022)

    Google Scholar 

  21. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 1716–1740 (2012)

    MathSciNet  Google Scholar 

  22. Wang, T.Y., Qin, Z.Y., Mu, G.: General high-order rogue waves in Hirota equation. Appl. Math. Lett. 140, 108571 (2023)

    MathSciNet  Google Scholar 

  23. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 403, 111692 (2022)

    MathSciNet  Google Scholar 

  24. Manakov, W.Q., Zakharov, V.E., Bordag, L.A.: Analysis on lump, Two-dimensional solitons of the Kadomtsev Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)

    Google Scholar 

  25. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    MathSciNet  Google Scholar 

  26. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  Google Scholar 

  27. Wazwaz, A.M.: Integrable (3+1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dyn. 109, 1929–1934 (2022)

    Google Scholar 

  28. Manakov, S.V., Zakharov, V.E., Bordag, L.A.: Analysis on lump, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)

    Google Scholar 

  29. Ma, W.X., Yong, X.L., Zhang, H.Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75, 289–295 (2018)

    MathSciNet  Google Scholar 

  30. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103(1), 947–977 (2021)

    Google Scholar 

  31. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  32. Zhou, F., Rao, J.G., Mihalache, D., He, J.S.: The multiple double-pole solitons and multiple negaton-type solitons in the space-shifted nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 146, 108796 (2023)

    Google Scholar 

  33. Sun, Y.Z., Hu, Z.H., Triki, H., Mirzazadeh, M., Liu, W.J., Biswas, A., Zhou, Q.: Analytical study of three-soliton interaction with different phase in nonlinear optics. Nonlinear Dyn. 111, 18391–18400 (2023)

    Google Scholar 

  34. Li, J.H., Chen, Q.Q., Li, B.: Resonance Y-type soliton solutions and some new types of hybrid solutions in the (2+1)-dimensional Sawada-Kotera equation. Commun. Theor. Phys. 73, 045006 (2021)

    MathSciNet  Google Scholar 

  35. Jin, Y.T., Chen, A.H.: Resonant solitary wave and resonant periodic wave solutions of the Kudryashov-Sinelshchikov equation. Phys. Scr. 95, 085208 (2020)

    Google Scholar 

  36. Ma, H.C., Gao, Y.D., Deng, A.P.: Fission and fusion solutions of the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation: case of fluid mechanics and plasma physics. Nonlinear Dyn. 108, 4123–4137 (2023)

    Google Scholar 

  37. Wang, C.J., Dai, Z.D., Lin, L.: Exact three-wave solution for higher dimensional KdV-type equation. Appl. Math. Comput. 216(2), 501–505 (2010)

    MathSciNet  Google Scholar 

  38. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  39. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  40. Tan, W.: Evolution of breathers and interaction between high-order lump solutions and \(N\)-solitons (\(N\rightarrow \infty \)) for breaking soliton system. Phys. Lett. A 383, 125907 (2019)

    MathSciNet  Google Scholar 

  41. Ying, L.N., Li, M.H.: The dynamics of some exact solutions of the (3+1)-dimensional generalized shallow water wave equation. Nonlinear Dyn. 111, 15633–15651 (2023)

    Google Scholar 

  42. Lu, C., Xie, L., Yang, H.: Analysis of Lie symmetries with conservation laws and solutions for the generalized (3+1)-dimensional time fractional Camassa-Holm-Kadomtsev Petviashvili equation. Comput. Math. Appl. 77, 3154–3171 (2019)

  43. Liu, Z.G., Zhang, K.L., Li, M.Y.: Exact traveling wave solutions and bifurcation of a generalized (3+1)-dimensional time-fractional Camassa-Holm-Kadomtsev-Petviashvili equation. J. Funct. Space 2020, 4532824 (2020)

    MathSciNet  Google Scholar 

  44. Feng, Y.Y., Wang, X.M., Bilige, S.: Evolutionary behavior and novel collision of various wave solutions to (3+1)-dimensional generalized Camassa-Holm Kadomtsev-Petviashvili equation. Nonlinear Dyn. 104, 4265–4275 (2021)

    Google Scholar 

  45. Chen, W.X., Tang, L.P., Tian, L.X.: Lump, breather and interaction solutions to the (3+1)-dimensional generalized Camassa-Holm Kadomtsev-Petviashvili equation. J. Math. Anal. Appl. 526, 127275 (2023)

    MathSciNet  Google Scholar 

  46. Wazwaz, A.M.: The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions. Appl. Math. Comput. 170, 347–360 (2005)

    MathSciNet  Google Scholar 

  47. Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T.: On breather waves, rogue waves and solitary waves to a generalized (2+1)-dimensional Camassa-Holm-Kadomtsev Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 62, 378–385 (2018)

    MathSciNet  Google Scholar 

  48. Osman, M.S., Inc, M., Liu, J.G., Hossein, K., Yusuf, A.: Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa-Holm-Kadomtsev Petviashvili equation. Phys. Scr. 95, 035229 (2020)

    Google Scholar 

  49. Wang, Z.L., Liu, X.Q.: Symmetry reductions and exact solutions of the (2+1)-dimensional Camassa-Holm Kadomtsev Petviashvili equation. Pramana J. Phys. 85, 3–16 (2015)

    Google Scholar 

  50. Cao, Y.L., Cheng, Y., He, J.S., Chen, Y.R.: High-order breather, \(M\)-kink lump and semi-rational solutions of potential Kadomtsev-Petviashvili equation. Commun. Theor. Phys. 73, 035004 (2021)

    MathSciNet  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant No. 12261076, 12261075), Scientific and Technological Innovation Team of Nonlinear Analysis and Algebra with Their Applications in Universities of Yunnan Province (Grant No. 2020CXTD25), Yunnan Fundamental Research Projects (Grant Nos. 202201AT070018, 202105AC160087, 202305AC160005, 202001BA070001-32, 202101BA070001-280), and Scientific Research Fund Project of Education Department of Yunnan Province (Grant No. 2023J1031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longxing Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests with publication of this work.

Ethical standard

The authors ensure the compliance with ethical standards for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Cheng, B. & Dai, Z. Novel evolutionary behaviors of \(\pmb {N}\)-soliton solutions for the (3+1)-dimensional generalized Camassa–Holm–Kadomtsev–Petciashvili equation. Nonlinear Dyn 112, 2157–2173 (2024). https://doi.org/10.1007/s11071-023-09122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09122-1

Keywords

Navigation