Skip to main content
Log in

Rumor spreading model with a focus on educational impact and optimal control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Rumor spreading brings great misconception and harm to society. To control the spread of rumors, it is essential to model rumor propagation and provide appropriate interference in inhibiting the propagation. In this paper, we establish an extended rumor-spreading model with a focus on the influence of knowledge education and intervention strategies in reducing rumor propagation. The mathematical rationality of the proposed model is examined, which demonstrates the existence of equilibrium and local asymptotic stability. To simulate the dynamics of rumor spreading in the proposed model and calibrate its unknown variables to a real case, we employ a novel rumor-informed neural network (RINN), which is constructed based on the physics-informed neural network (PINN) and real rumor spreading. The numerical simulation experiments indicate that the reinforcement of education on rumor identification and timely refutation of false information is effective in controlling the propagation of rumors. Moreover, the optimal control strategies are further proposed to determine the efficient means of mitigating the risk associated with the rapid spread of rumors. Our findings present that proactive dissemination of publicity and educational content can effectively enhance individuals’ awareness of rumor information. Specifically, prompt dispelling of false information can result in a higher success rate of dispelling rumors, a shorter duration of rumor dissemination, and a lower peak in the number of rumor disseminators, thereby facilitating effective control of the spread of rumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availibility

The datasets analyzed in the current research are obtained from the database of the paper titled Reciprocal spreading and debunking processes of online misinformation: A new rumor spreading-debunking model with a case study in the journal Physica A.

References

  1. Zhao, L., Li, K., Zhang, Z., et al.: Inactivated SARS-COV-2 vaccine safety and immunogenicity in nonhuman primates. Sci. China Life Sci. 64(11), 1848–1856 (2021)

    Google Scholar 

  2. Su, Q., Zhang, Y., Zou, Y., et al.: Safety and efficacy of an inactivated vaccine candidate for Covid-19 in healthy adults: a randomized, placebo-controlled, phase 1/2 clinical trial. Lancet. Infect. Dis 21(2), 181–192 (2021)

    Article  Google Scholar 

  3. Disease Control, C., Prevention: COVID-19 Vaccines and Fertility. Online (2021). https://www.cdc.gov/coronavirus/2019-ncov/vaccines/facts.html#anchor_1630186642724

  4. Romer, D., Jamieson, K.H.: Conspiracy theories as barriers to controlling the spread of Covid-19 in the us. Soc. Sci. Med. 263, 113356 (2020)

    Article  Google Scholar 

  5. Daley, D.J., Kendall, D.G.: Epidemics and Rumours. Nature 204, 1118–1118 (1964)

    Article  Google Scholar 

  6. Maki, D.P., Thompson, M.: Mathematical models and applications prentice-hall. Englewood Cliffs (NJ) (1973)

  7. Gani, J.: The Maki-Thompson Rumour model: a detailed analysis. Environ. Modell. Softw. 15(8), 721–725 (2000)

    Article  Google Scholar 

  8. Zhao, L., Wang, J., Chen, Y., Wang, Q., Cheng, J., Cui, H.: Sihr rumor spreading model in social networks. Phys. A 391(7), 2444–2453 (2012)

    Article  Google Scholar 

  9. He, Z., Cai, Z., Yu, J., Wang, X., Sun, Y., Li, Y.: Cost-efficient strategies for restraining rumor spreading in mobile social networks. IEEE Trans. Veh. Technol. 66(3), 2789–2800 (2016)

    Article  Google Scholar 

  10. Hu, Y., Pan, Q., Hou, W., He, M.: Rumor spreading model with the different attitudes towards rumors. Phys. A 502, 331–344 (2018)

    Article  MathSciNet  Google Scholar 

  11. Yu, S., Yu, Z., Jiang, H., Mei, X., Li, J.: The spread and control of rumors in a multilingual environment. Nonlinear Dyn. 100, 2933–2951 (2020)

    Article  Google Scholar 

  12. Pan, W., Yan, W., Hu, Y., He, R., Wu, L.: Dynamic analysis of a Sidrw rumor propagation model considering the effect of media reports and rumor refuters. Nonlinear Dyn. 111(4), 3925–3936 (2023)

    Article  Google Scholar 

  13. Afassinou, K.: Analysis of the impact of education rate on the rumor spreading mechanism. Physica A 414, 43–52 (2014)

    Article  MathSciNet  Google Scholar 

  14. Jiang, M., Gao, Q., Zhuang, J.: Reciprocal spreading and debunking processes of online misinformation: a new rumor spreading-debunking model with a case study. Physica A 565, 125572 (2021)

    Article  MathSciNet  Google Scholar 

  15. Ye, Y., Zhou, J., Zhao, Y.: Pattern formation in reaction-diffusion information propagation model on multiplex simplicial complexes (2023) https://doi.org/10.21203/rs.3.rs-3024570/v1

  16. Zhou, J., Ye, Y., Arenas, A., Gómez, S., Zhao, Y.: Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks. Chaos Solitons Fractals 174, 113805 (2023). https://doi.org/10.1016/j.chaos.2023.113805

    Article  MathSciNet  Google Scholar 

  17. Nascimento, R.G., Fricke, K., Viana, F.A.: A tutorial on solving ordinary differential equations using python and hybrid physics-informed neural network. Eng. Appl. Artif. Intell. 96, 103996 (2020)

    Article  Google Scholar 

  18. Viana, F.A., Nascimento, R.G., Dourado, A., Yucesan, Y.A.: Estimating model inadequacy in ordinary differential equations with physics-informed neural networks. Comput. Struct. 245, 106458 (2021)

    Article  Google Scholar 

  19. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  20. Yin, Y.-H., Lü, X.: Dynamic analysis on optical pulses via modified Pinns: Soliton solutions, rogue waves and parameter discovery of the cq-nlse. Commun. Nonlinear Sci. Numer. Simul. 126, 107441 (2023)

    Article  MathSciNet  Google Scholar 

  21. Berkhahn, S., Ehrhardt, M.: A physics-informed neural network to model Covid-19 infection and hospitalization scenarios. Adv. Contin. Discrete Models 2022(1), 61 (2022)

    Article  MathSciNet  Google Scholar 

  22. Long, J., Khaliq, A., Furati, K.M.: Identification and prediction of time-varying parameters of Covid-19 model: a data-driven deep learning approach. Int. J. Comput. Math. 98(8), 1617–1632 (2021)

    Article  MathSciNet  Google Scholar 

  23. Lu, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of Covid-19. Nonlinear Dyn. 106(2), 1491–1507 (2021)

    Article  Google Scholar 

  24. Yin, M.-Z., Zhu, Q.-W., Lü, X.: Parameter estimation of the incubation period of Covid-19 based on the doubly interval-censored data model. Nonlinear Dyn. 106(2), 1347–1358 (2021)

    Article  Google Scholar 

  25. Cao, F., Lü, X., Zhou, Y.-X., Cheng, X.-Y.: Modified SEIAR infectious disease model for Omicron variants spread dynamics. Nonlinear Dyn. 111(15), 14597–14620 (2023)

    Article  Google Scholar 

  26. Chen, Y., Lü, X., Wang, X.-L.: Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+ 1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 138(6), 492 (2023)

    Article  Google Scholar 

  27. Chen, S.-J., Lü, X., Yin, Y.-H.: Dynamic behaviors of the lump solutions and mixed solutions to a (2+ 1)-dimensional nonlinear model. Commun. Theor. Phys. 75(5), 055005 (2023)

    Article  MathSciNet  Google Scholar 

  28. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul., 107205 (2023)

  29. Yin, Y.-H., Lü, X., Ma, W.-X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Article  Google Scholar 

  30. Liu, B., Zhang, X.-E., Wang, B., Lü, X.: Rogue waves based on the coupled nonlinear schrödinger option pricing model with external potential. Mod. Phys. Lett. B 36(15), 2250057 (2022)

    Article  Google Scholar 

  31. Guo, H., Yin, Q., Xia, C., Dehmer, M.: Impact of information diffusion on epidemic spreading in partially mapping two-layered time-varying networks. Nonlinear Dyn. 105(4), 3819–3833 (2021)

    Article  Google Scholar 

  32. Wang, Z., Xia, C.: Co-evolution spreading of multiple information and epidemics on two-layered networks under the influence of mass media. Nonlinear Dyn. 102, 3039–3052 (2020)

    Article  Google Scholar 

  33. Wang, Z., Guo, Q., Sun, S., Xia, C.: The impact of awareness diffusion on sir-like epidemics in multiplex networks. Appl. Math. Comput. 349, 134–147 (2019)

    MathSciNet  Google Scholar 

  34. Ji, P., Ye, J., Mu, Y., Lin, W., Tian, Y., Hens, C., Perc, M., Tang, Y., Sun, J., Kurths, J.: Signal propagation in complex networks. Phys. Rep. 1017, 1–96 (2023)

    Article  MathSciNet  Google Scholar 

  35. Jusup, M., Holme, P., Kanazawa, K., Takayasu, M., Romić, I., Wang, Z., Geček, S., Lipić, T., Podobnik, B., Wang, L., et al.: Social physics. Phys. Rep. 948, 1–148 (2022)

    Article  MathSciNet  Google Scholar 

  36. Hale, J.: Smv lunel introduction to functional differential equations. Springer Verlag New York 19, 437–443 (1993)

    Google Scholar 

  37. Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  38. Ottaviano, S., Sensi, M., Sottile, S.: Global stability of Sairs epidemic models. Nonlinear Anal. Real World Appl. 65, 103501 (2022)

    Article  MathSciNet  Google Scholar 

  39. Perko, L.: Differential equations and dynamical systems. Springer Sci. Bus. Med., 7 (2013)

  40. Centers for Disease Control and Prevention (CDC): Mortality in the United States, 2017. National Vital Statistics Reports, Vol. 68, No. 9 (2018). https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf

  41. Bureau of Labor Statistics: Educational Attainment in the United States: 2017. USDL-18-1432, U.S. Department of Labor (2018). https://www.bls.gov/news.release/pdf/hsgec.pdf

  42. Twitter Inc.: Twitter Help Center: Age requirements. https://help.twitter.com/en/rules-and-policies/twitter-age-requirements

  43. Martin, J.A., Hamilton, B.E., Sutton, P.D., Ventura, S.J., Menacker, F., Kirmeyer, S., Munson, M.L.: Births: final data for: National vital statistics reports: from the centers for disease control and prevention, national center for health statistics. Nat. Vital Stat. Syst. 50(5), 1–101 (2000)

    Google Scholar 

  44. Martin, J.A., Hamilton, B.E., Sutton, P.D., Ventura, S.J., Menacker, F., Munson, M.L.: Births: final data for, national vital statistics reports: from the centers for disease control and prevention, national center for health statistics. Nat. Vital Stat. Syst. 51(2), 1–102 (2001)

    Google Scholar 

  45. Martin, J.A., Hamilton, B.E., Sutton, P.D., Ventura, S.J., Mathews, T.J., Osterman, M.J., Kirmeyer, S., Hoyert, D.L., Strobino, D.M.: Births: final data for: national vital statistics reports: from the centers for disease control and prevention, national center for health statistics. Nat. Vital Stat. Syst. 52(10), 1–113 (2002)

    Google Scholar 

  46. Martin, J.A., Hamilton, B.E., Sutton, P.D., Ventura, S.J., Mathews, T.J., Kirmeyer, S., Osterman, M.J.: Births: final data for: national vital statistics reports: from the centers for disease control and prevention, national center for health statistics. Nat. Vital Stat. Syst. 54(2), 1–116 (2005)

    Google Scholar 

  47. Deng, Y., Zhao, Y.: Mathematical modeling for COVID-19 with focus on intervention strategies and cost-effectiveness analysis. Nonlinear Dyn. 110(4), 3893–919 (2022)

    Article  MathSciNet  Google Scholar 

  48. Lenhart, S., Workman, J.T.: Optimal control applied to biological models. CRC press (2007)

Download references

Funding

This work was supported by the Nature Science Foundation of Guangdong Province under Project No. 2021A1515011594 and the University Innovative Team Project of Guangdong Province under Grant No. 2022KCXTD039.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. DL, YZ, and YD were involved in material preparation, data collection, and analysis. The first draft of the manuscript was written by DL, YZ, and YD. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi Zhao.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest during this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhao, Y. & Deng, Y. Rumor spreading model with a focus on educational impact and optimal control. Nonlinear Dyn 112, 1575–1597 (2024). https://doi.org/10.1007/s11071-023-09102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09102-5

Keywords

Navigation