Skip to main content
Log in

Joint sparse least squares via generalized fused lasso penalty for identifying nonlinear dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a joint sparse least-square model that utilizes a generalized fused lasso penalty to jointly identify governing equations of nonlinear dynamical systems from multiple noisy state measurements. The idea to combine a data fusion approach with least squares is that the fusion term added could make use of the more similarity information carried by different state measurements, which can further improve identified accuracy of dynamical system in regression tasks. The threshold joint sparse least-square algorithm is developed, wherein the threshold parameter is picked using the L-curve criterion. The results from the simulation experiment demonstrate our method possesses a higher accuracy in identifying dynamical system compared to traditional sparse least squares, indicating its potential power to understand gradually more complex systems from multiple data sources in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aguirre, L.A., Christophe, L.: Modeling nonlinear dynamics and chaos: a review. Math. Probl. Eng. 2009(1024–123X), 238960 (2014)

    MathSciNet  Google Scholar 

  2. Ljung, L.: Perspectives on system identification. Annu. Rev. Control. 34(1), 1–12 (2010)

    Article  Google Scholar 

  3. Judd, K., Mees, A.: On selecting models for nonlinear time-series. Physica D 82(4), 426–444 (1995)

    Article  Google Scholar 

  4. Kashyap, R.: System identification. IEEE Trans. Autom. Control 18(1), 85–86 (1973)

    Article  Google Scholar 

  5. Kolassa, S.: Statistical learning with sparsity. The lasso and generalizations. Int. J. Forecast. 33(3), 743–744 (2017)

    Article  Google Scholar 

  6. Abel, M.: Nonparametric modeling and spatiotemporal dynamical systems. Int J Bifurc. Chaos 14(6), 2027–2039 (2004)

    Article  MathSciNet  Google Scholar 

  7. Abel, M., Ahnert, K., Kurths, J., Mandelj, S.: Additive nonparametric reconstruction of dynamical systems from time series. Phys. Rev. E 71(1), 015203 (2004)

    Article  Google Scholar 

  8. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  9. Rey, D., Eldridge, M., Kostuk, M., Abarbanel, H., Schumann-Bischoff, J., Parlitz, U.: Accurate state and parameter estimation in nonlinear systems with sparse observations. Phys. Lett. A 378(11–12), 869–873 (2014)

    Article  Google Scholar 

  10. Voss, H.U., Kolodner, P., Abel, M., Kurths, J.: Amplitude equations from spatiotemporal binary-fluid convection data. Phys. Rev. Lett. 83(17), 3422–3425 (1999)

    Article  Google Scholar 

  11. Bongard, J., Lipson, H.: From the cover: automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 104(24), 9943–9948 (2007)

    Article  Google Scholar 

  12. Schmidt, M., Lipson, H.: Symbolic Regression of Implicit Equations. Springer (2009)

    Google Scholar 

  13. Schmidt, M., Vallabhajosyula, R.R., Jenkins, J.W., Hood, J.E., Soni, A.S., Wikswo, J.P., Lipson, H.: Automated refinement and inference of analytical models for metabolic networks. Phys. Biol. 8(5), 055011 (2011)

    Article  Google Scholar 

  14. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  Google Scholar 

  15. Wang, W.X., Yang, R., Lai, Y.C., Kovanis, V., Grebogi, C.: Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106(15), 154101 (2011)

    Article  Google Scholar 

  16. Brunton, S.L., Proctor, J.L., Kutz, N.J.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)

    Article  MathSciNet  Google Scholar 

  17. Brunton, S.L., Xing, F., Kutz, J.N.: Self-tuning fiber lasers. IEEE J. Sel. Top. Quantum Electron. 20(5), 464–471 (2016)

    Article  Google Scholar 

  18. Mangan, N.M., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2(1), 52–63 (2016)

    Article  Google Scholar 

  19. Schaeffer, H., Mccalla, S.G.: Sparse model selection via integral terms. Phys. Rev. E 96(2), 023302 (2017)

    Article  MathSciNet  Google Scholar 

  20. Tran, G., Ward, R.: Exact recovery of chaotic systems from highly corrupted data. Multiscale Model. Simul. 15(3), 1108–1129 (2017)

    Article  MathSciNet  Google Scholar 

  21. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3(4), e1602614 (2017)

    Article  Google Scholar 

  22. Schaeffer, H.: Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. Lond. 473(2197), 20160446 (2017)

    MathSciNet  Google Scholar 

  23. Danaher, P., Wang, P., Witten, D.M.: The joint graphical lasso for inverse covariance estimation across multiple classes. J. R. Stat. Soc. Ser. B Stat. Methodol. 76(2), 373–397 (2014)

    Article  MathSciNet  Google Scholar 

  24. Tian, Y., Zhang, B., Hoffman, E.P., Clarke, R., Shih, I.M., Xuan, J.H., Herrington, D.M.: Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks. BMC Syst. Biol. 8, 87 (2014)

    Article  Google Scholar 

  25. Yang, S., Lu, Z., Shen, X., Wonka, P., Ye, J.: Fused multiple graphical lasso. SIAM J. Optim. 25(2), 916–943 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zhang, L., Schaeffer, H.: On the convergence of the SINDy algorithm. Multiscale Model. Simul. 17(3), 948–972 (2018)

    Article  MathSciNet  Google Scholar 

  27. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields/John Guckenheimer, Philip Holmes. SIAM Rev. 26(4), 600–601 (1984)

    Article  Google Scholar 

  28. Fang, J., Lin, D., Schulz, S.C., Xu, Z., Calhoun, V.D., Wang, Y.P.: Joint sparse canonical correlation analysis for detecting differential imaging genetics modules. Bioinformatics 32(22), 3480–3488 (2016)

    Article  Google Scholar 

  29. Hoefling, H.: A path algorithm for the fused lasso signal approximator. J. Comput. Graph. Stat. 19(4), 984–1006 (2010)

    Article  MathSciNet  Google Scholar 

  30. Tehrani, J.N., McEwan, A., Jin, C., Van Schaik, A.: L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto Frontier Curve). Appl. Math. Model. 36(3), 1095–1105 (2012)

    Article  MathSciNet  Google Scholar 

  31. Yao, H., Gerstoft, P., Shearer, P.M., Mecklenbruker, C.: Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: frequency-dependent rupture modes. Geophys. Res. Lett. 38(20), L20310 (2011)

    Article  Google Scholar 

  32. Leonid, R., Stanley, O., Emad, F.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    MathSciNet  Google Scholar 

  33. Chartrand, R.: Numerical differentiation of noisy, nonsmooth data. ISRN Appl. Math. 2011, 1023–1033 (2011)

    Article  MathSciNet  Google Scholar 

  34. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  35. Schaeffer, H., Caflisch, R., Hauck, C.D., Osher, S.: Sparse dynamics for partial differential equations. Proc. Natl. Acad. Sci. 110(17), 6634–6639 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12372034 and Grant No. 12072261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Xu, W., Niu, L. et al. Joint sparse least squares via generalized fused lasso penalty for identifying nonlinear dynamical systems. Nonlinear Dyn 112, 1173–1190 (2024). https://doi.org/10.1007/s11071-023-09098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09098-y

Keywords

Navigation