Skip to main content
Log in

Nonlinear dynamic analysis of the graphene platelets reinforced porous plate with magneto-electro-elastic sheets subjected to impact load

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the nonlinear dynamic characteristics of the simply supported and clamped graphene platelets reinforced porous plates with magneto-electro-elastic (MEE) sheets (GPLRP-MEE) subjected to axial impact loads. Three kinds of impacts, i.e. sinusoidal, exponential, and rectangular loads, are considered in this research. Grounded on the refined third-order shear deformation theory and the von Kármán nonlinearity, the nonlinear governing equations are transformed into a group of ordinary differential equations with the aid of the Galerkin method. Then, the fourth-order Runge–Kutta approach is adopted to obtain the nonlinear behaviours of the GPLRP-MEE plate under the impact load. After validating with the published literature, some parametric experiments are conducted to investigate the effects of the pulse load configurations, the internal structure of the GPLRP core layer, the dimensions of MEE sheets, the external magnetic and electric potentials, and the Winkler–Pasternak foundation moduli on the dynamic behaviours of the structure. According to the numerical results, it is revealed that the rectangular and sinusoidal loads pose a greater threat to the structure than the exponential one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors declare that all data and materials support the research in this paper.

References

  1. Tabrizikahou, A., Kuczma, M., Nowotarski, P., Kwiatek, M., Javanmardi, A.: Sustainability of civil structures through the application of smart materials: a review. Materials 14, 4824 (2021). https://doi.org/10.3390/ma14174824

    Article  Google Scholar 

  2. Li, Z.-X., Yang, X.-M., Li, Z.: Application of cement-based piezoelectric sensors for monitoring traffic flows. J. Transp. Eng. 132, 565–573 (2006). https://doi.org/10.1061/(ASCE)0733-947X(2006)132:7(565)

    Article  Google Scholar 

  3. Fang, F., Meng, F., Luo, L.: Recent advances on polydiacetylene-based smart materials for biomedical applications. Mater. Chem. Front. 4, 1089–1104 (2020). https://doi.org/10.1039/C9QM00788A

    Article  Google Scholar 

  4. Zheng, X., Wang, Q., Li, Y., Luan, J., Wang, N.: Microcapsule-based visualization smart sensors for damage detection: principles and applications. Adv. Mater. Technol. 5, 1900832 (2020). https://doi.org/10.1002/admt.201900832

    Article  Google Scholar 

  5. Othmani, C., Zhang, H., Lü, C., Qing Wang, Y., Reza Kamali, A.: Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites—A review. Compos. Struct. 286, 115245 (2022). https://doi.org/10.1016/j.compstruct.2022.115245

    Article  Google Scholar 

  6. Przybylski, J., Kuliński, K.: Nonlinear vibrations of a sandwich piezo-beam system under piezoelectric actuation. Nonlinear Dyn. 109, 689–706 (2022). https://doi.org/10.1007/s11071-022-07477-5

    Article  Google Scholar 

  7. Hu, Y., Xu, H.: Nonaxisymmetric magnetoelastic coupling natural vibration analysis of annular plates in an induced non-uniform magnetic field. Nonlinear Dyn. 109, 657–687 (2022). https://doi.org/10.1007/s11071-022-07475-7

    Article  Google Scholar 

  8. Liu, Q., Cao, J., Hu, F., Li, D., Jing, X., Hou, Z.: Parameter identification of nonlinear bistable piezoelectric structures by two-stage subspace method. Nonlinear Dyn. 105, 2157–2172 (2021). https://doi.org/10.1007/s11071-021-06738-z

    Article  Google Scholar 

  9. Mendes, B.A.P., Mazzilli, C.E.N., Ribeiro, E.A.R.: Energy harvesting in a slender-rod model with modal asynchronicity. Nonlinear Dyn. 99, 611–624 (2020). https://doi.org/10.1007/s11071-019-04827-8

    Article  Google Scholar 

  10. Mousavi, M., Alzgool, M., Towfighian, S.: Electrostatic levitation: an elegant method to control MEMS switching operation. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06499-9

    Article  Google Scholar 

  11. Ghaffari, S.S., Ceballes, S., Abdelkefi, A.: Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings. Nonlinear Dyn. 100, 1013–1035 (2020). https://doi.org/10.1007/s11071-020-05565-y

    Article  Google Scholar 

  12. Zhang, W., Guo, L.J., Wang, Y., Mao, J.J., Yan, J.: Nonlinear low-velocity impact response of GRC beam with geometric imperfection under thermo-electro-mechanical loads. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07809-5

    Article  Google Scholar 

  13. Norenberg, J.P., Cunha, A., da Silva, S., Varoto, P.S.: Global sensitivity analysis of asymmetric energy harvesters. Nonlinear Dyn. 109, 443–458 (2022). https://doi.org/10.1007/s11071-022-07563-8

    Article  Google Scholar 

  14. Zhou, L., Wang, J., Liu, M., Li, M., Chai, Y.: Evaluation of the transient performance of magneto-electro-elastic based structures with the enriched finite element method. Compos. Struct. 280, 114888 (2022). https://doi.org/10.1016/j.compstruct.2021.114888

    Article  Google Scholar 

  15. Mahesh, V.: Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto-electro-elastic facesheets. Thin Walled Struct. 179, 109547 (2022). https://doi.org/10.1016/j.tws.2022.109547

    Article  Google Scholar 

  16. Pradhan, D.K., Kumari, S., Rack, P.D.: Magneto-electric composites: applications, coupling mechanisms, and future directions. Nanomaterials 10, 2072 (2020). https://doi.org/10.3390/nano10102072

    Article  Google Scholar 

  17. Vinyas, M.: Computational analysis of smart magneto-electro-elastic materials and structures: review and classification. Arch. Comput. Methods Eng. 28, 1205–1248 (2021). https://doi.org/10.1007/s11831-020-09406-4

    Article  MathSciNet  Google Scholar 

  18. Na, Y., Lee, M.-S., Lee, J.W., Jeong, Y.H.: Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure. Appl. Energy 264, 114710 (2020). https://doi.org/10.1016/j.apenergy.2020.114710

    Article  Google Scholar 

  19. Zhang, B., Zhang, J., Fan, J.: A coupled electromechanical analysis of a piezoelectric layer bonded to an elastic substrate: part II, numerical solution and applications. Int. J. Solids Struct. 40, 6799–6812 (2003). https://doi.org/10.1016/S0020-7683(03)00312-3

    Article  Google Scholar 

  20. Dat, N.D., Quan, T.Q., Mahesh, V., Duc, N.D.: Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. 186, 105906 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105906

    Article  Google Scholar 

  21. Żur, K.K., Arefi, M., Kim, J., Reddy, J.N.: Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. Part B Eng. (2020). https://doi.org/10.1016/j.compositesb.2019.107601

    Article  Google Scholar 

  22. Siddharth Mangalasseri, A., Mahesh, V., Mahesh, V., Ponnusami, S.A., Harursampath, D.: Investigation on the interphase effects on the energy harvesting characteristics of three phase magneto-electro-elastic cantilever beam. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2062630

    Article  Google Scholar 

  23. Guo, H., Ouyang, X., Żur, K.K., Wu, X.: Meshless numerical approach to flutter analysis of rotating pre-twisted nanocomposite blades subjected to supersonic airflow. Eng. Anal. Bound. Elem. 132, 1–11 (2021). https://doi.org/10.1016/j.enganabound.2021.07.008

    Article  MathSciNet  Google Scholar 

  24. Guo, H., Li, M., Żur, K.K., Yuan, J., Wu, X.: Flutter of carbon-based nanohybrid composite panels. Thin Walled Struct. 188, 110828 (2023). https://doi.org/10.1016/j.tws.2023.110828

    Article  Google Scholar 

  25. Guo, H., Ouyang, X., Żur, K.K., Wu, X., Yang, T., Ferreira, A.J.M.: On the large-amplitude vibration of rotating pre-twisted graphene nanocomposite blades in a thermal environment. Compos. Struct. 282, 115129 (2022). https://doi.org/10.1016/j.compstruct.2021.115129

    Article  Google Scholar 

  26. Guo, H., Ouyang, X., Yang, T., Żur, K.K., Reddy, J.N.: On the dynamics of rotating cracked functionally graded blades reinforced with graphene nanoplatelets. Eng. Struct. 249, 113286 (2021). https://doi.org/10.1016/j.engstruct.2021.113286

    Article  Google Scholar 

  27. Asadi, N., Arvin, H., Żur, K.K.: Campbell diagrams, dynamics and instability zones of graphene-based spinning shafts. Appl. Math. Model. 121, 111–133 (2023). https://doi.org/10.1016/j.apm.2023.04.006

    Article  MathSciNet  Google Scholar 

  28. Babaei, H., Żur, K.K.: Effect of thermal pre/post-buckling regimes on vibration and instability of graphene-reinforced composite beams. Eng. Anal. Bound. Elem. 152, 528–539 (2023). https://doi.org/10.1016/j.enganabound.2023.04.022

    Article  MathSciNet  Google Scholar 

  29. Babaei, H., Żur, K.K.: On the pressure–deflection relations and instability of carbon-based composite nonlinear pipes. Eng. Anal. Bound. Elem. 151, 624–638 (2023). https://doi.org/10.1016/j.enganabound.2023.03.036

    Article  Google Scholar 

  30. Yang, Z., Wu, H., Yang, J., Liu, A., Safaei, B., Lv, J., Fu, J.: Nonlinear forced vibration and dynamic buckling of FG graphene-reinforced porous arches under impulsive loading. Thin Walled Struct. 181, 110059 (2022). https://doi.org/10.1016/j.tws.2022.110059

    Article  Google Scholar 

  31. Li, Q., Wu, D., Chen, X., Liu, L., Yu, Y., Gao, W.: Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int. J. Mech. Sci. 148, 596–610 (2018). https://doi.org/10.1016/j.ijmecsci.2018.09.020

    Article  Google Scholar 

  32. Gao, K., Do, D.M., Li, R., Kitipornchai, S., Yang, J.: Probabilistic stability analysis of functionally graded graphene reinforced porous beams. Aerosp. Sci. Technol. 98, 105738 (2020). https://doi.org/10.1016/j.ast.2020.105738

    Article  Google Scholar 

  33. Nguyen, N.V., Nguyen-Xuan, H., Lee, J.: A quasi-three-dimensional isogeometric model for porous sandwich functionally graded plates reinforced with graphene nanoplatelets. J. Sandw. Struct. Mater. (2021). https://doi.org/10.1177/10996362211020451

    Article  Google Scholar 

  34. Xu, Z., Zhang, Z., Wang, J., Chen, X., Huang, Q.: Acoustic analysis of functionally graded porous graphene reinforced nanocomposite plates based on a simple quasi-3D HSDT. Thin Walled Struct. (2020). https://doi.org/10.1016/j.tws.2020.107151

    Article  Google Scholar 

  35. Zhao, S., Yang, Z., Kitipornchai, S., Yang, J.: Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin Walled Struct. 147, 106491 (2020). https://doi.org/10.1016/j.tws.2019.106491

    Article  Google Scholar 

  36. Shahgholian-Ghahfarokhi, D., Safarpour, M., Rahimi, A.: Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech. Based Des. Struct. Mach. 49, 81–102 (2021). https://doi.org/10.1080/15397734.2019.1666723

    Article  Google Scholar 

  37. Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J., Xu, X.: Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. Int. J. Mech. Sci. 151, 537–550 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.012

    Article  Google Scholar 

  38. Barati, M.R., Zenkour, A.M.: Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech. Adv. Mater. Struct. 26, 503–511 (2019). https://doi.org/10.1080/15376494.2017.1400622

    Article  Google Scholar 

  39. Liu, Y., Feng, Y., Wu, D., Chen, X., Gao, W.: Virtual modelling integrated phase field method for dynamic fracture analysis. Int. J. Mech. Sci. 252, 108372 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108372

    Article  Google Scholar 

  40. Wang, Q., Feng, Y., Wu, D., Yang, C., Yu, Y., Li, G., Beer, M., Gao, W.: Polyphase uncertainty analysis through virtual modelling technique. Mech. Syst. Signal Process. 162, 108013 (2022). https://doi.org/10.1016/j.ymssp.2021.108013

    Article  Google Scholar 

  41. Wang, Q., Feng, Y., Wu, D., Li, G., Liu, Z., Gao, W.: Polymorphic uncertainty quantification for engineering structures via a hyperplane modelling technique. Comput. Methods Appl. Mech. Eng. 398, 115250 (2022). https://doi.org/10.1016/j.cma.2022.115250

    Article  MathSciNet  Google Scholar 

  42. Feng, Y., Wu, D., Stewart, M.G., Gao, W.: Past, current and future trends and challenges in non-deterministic fracture mechanics: a review. Comput. Methods Appl. Mech. Eng. 412, 116102 (2023). https://doi.org/10.1016/j.cma.2023.116102

    Article  MathSciNet  Google Scholar 

  43. Dong, B., Yu, Y., Gao, W., Zhao, G.: A novel method for chloride-induced corrosion analysis incorporating consistent ionic diffusivity and concrete resistivity. Constr. Build. Mater. 365, 129941 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129941

    Article  Google Scholar 

  44. Dong, B., Yu, Y., Feng, Y., Wu, D., Zhao, G., Liu, A., Gao, W.: Robust numerical solution for assessing corrosion of reinforced concrete structures under external power supply. Eng. Struct. 294, 116724 (2023). https://doi.org/10.1016/j.engstruct.2023.116724

    Article  Google Scholar 

  45. Feng, Y., Wang, Q., Yu, Y., Zhang, T., Wu, D., Chen, X., Luo, Z., Gao, W.: Experimental-numerical-virtual (ENV) modelling technique for composite structure against low velocity impacts. Eng. Struct. 278, 115488 (2023). https://doi.org/10.1016/j.engstruct.2022.115488

    Article  Google Scholar 

  46. Weller, T., Abramovich, H., Yaffe, R.: Dynamic buckling of beams and plates subjected to axial impact. Comput. Struct. 32, 835–851 (1989). https://doi.org/10.1016/0045-7949(89)90368-4

    Article  Google Scholar 

  47. Patel, G., Nayak, A.N., Srivastava, A.K.L.: Dynamic instability analysis and design charts of curved panels with linearly varying periodic in-plane load. Int. J. Struct. Stab. Dyn. 21, 2150130 (2021). https://doi.org/10.1142/S0219455421501303

    Article  MathSciNet  Google Scholar 

  48. Gu, X.J., Hao, Y.X., Zhang, W., Chen, J.: Dynamic stability of rotating cantilever composite thin walled twisted plate with initial geometric imperfection under in-plane load. Thin Walled Struct. 144, 106267 (2019). https://doi.org/10.1016/j.tws.2019.106267

    Article  Google Scholar 

  49. Al-Furjan, M.S.H., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J., Safarpour, M.: Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework. Eng. Comput. 38, 3675–3697 (2022). https://doi.org/10.1007/s00366-020-01177-7

    Article  Google Scholar 

  50. Petry, D., Fahlbusch, G.: Dynamic buckling of thin isotropic plates subjected to in-plane impact. Thin Walled Struct. 38, 267–283 (2000). https://doi.org/10.1016/S0263-8231(00)00037-9

    Article  Google Scholar 

  51. Xu, F., Yu, K., Hua, L.: In-plane dynamic response and multi-objective optimization of negative Poisson’s ratio (NPR) honeycomb structures with sinusoidal curve. Compos. Struct. 269, 114018 (2021). https://doi.org/10.1016/j.compstruct.2021.114018

    Article  Google Scholar 

  52. Zhou, Y., Li, Y., Jiang, D., Chen, Y., Min Xie, Y., Jia, L.-J.: In-plane impact behavior of 3D-printed auxetic stainless honeycombs. Eng. Struct. 266, 114656 (2022). https://doi.org/10.1016/j.engstruct.2022.114656

    Article  Google Scholar 

  53. Hutchinson, J.W., Budiansky, B.: Dynamic buckling estimates. AIAA J. 4, 525–530 (1966). https://doi.org/10.2514/3.3468

    Article  Google Scholar 

  54. Bo, L., Gao, W., Yu, Y., Chen, X.: Geometrically nonlinear dynamic analysis of the stiffened perovskite solar cell subjected to biaxial velocity impacts. Nonlinear Dyn. 110, 281–311 (2022). https://doi.org/10.1007/s11071-022-07619-9

    Article  Google Scholar 

  55. Kolahchi, R., Zhu, S.-P., Keshtegar, B., Trung, N.-T.: Dynamic buckling optimisation of laminated aircraft conical shells with hybrid nanocomposite martial. Aerosp. Sci. Technol. 98, 105656 (2020). https://doi.org/10.1016/j.ast.2019.105656

    Article  Google Scholar 

  56. Pölöskei, T., Szekrényes, A.: Dynamic stability analysis of delaminated composite beams in frequency domain using a unified beam theory with higher order displacement continuity. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.114173

    Article  Google Scholar 

  57. Rostamijavanani, A.: Dynamic buckling of cylindrical composite panels under axial compressions and lateral external pressures. J. Fail. Anal. Prev. (2020). https://doi.org/10.1007/s11668-020-01032-3

    Article  Google Scholar 

  58. Roberts, A., Garboczi, E.: Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 49, 189–197 (2000). https://doi.org/10.1016/S1359-6454(00)00314-1

    Article  Google Scholar 

  59. Roberts, A.P., Garboczi, E.J.: Computation of the linear elastic properties of random porous materials with a wide variety of microstructure. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458, 1033–1054 (2002). https://doi.org/10.1098/rspa.2001.0900

    Article  MathSciNet  Google Scholar 

  60. Li, Q., Wu, D., Gao, W., Tin-Loi, F., Liu, Z., Cheng, J.: Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory. Eur. J. Mech. A. Solids 78, 103852 (2019). https://doi.org/10.1016/j.euromechsol.2019.103852

    Article  MathSciNet  Google Scholar 

  61. Liu, L., Li, J.-M., Kardomateas, G.A.: Nonlinear vibration of a composite plate to harmonic excitation with initial geometric imperfection in thermal environments. Compos. Struct. 209, 401–423 (2019). https://doi.org/10.1016/j.compstruct.2018.10.101

    Article  Google Scholar 

  62. Li, Q., Tian, Y., Wu, D., Gao, W., Yu, Y., Chen, X., Yang, C.: The nonlinear dynamic buckling behaviour of imperfect solar cells subjected to impact load. Thin Walled Struct. (2021). https://doi.org/10.1016/j.tws.2021.108317

    Article  Google Scholar 

  63. Tian, Y., Li, Q., Wu, D., Chen, X., Gao, W.: Nonlinear dynamic stability analysis of clamped and simply supported organic solar cells via the third-order shear deformation plate theory. Eng. Struct. 252, 113616 (2022). https://doi.org/10.1016/j.engstruct.2021.113616

    Article  Google Scholar 

  64. Boggs, D., Dragovich, J.: The nature of wind loads and dynamic response. Special Publ. 240, 15–44 (2006)

    Google Scholar 

  65. Dinh Dat, N., Quoc Quan, T., Dinh Duc, N.: Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading. Compos. Struct. 280, 114925 (2022). https://doi.org/10.1016/j.compstruct.2021.114925

    Article  Google Scholar 

  66. Leissa, A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257–293 (1973). https://doi.org/10.1016/S0022-460X(73)80371-2

    Article  Google Scholar 

  67. Sobhy, M.: Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct. 99, 76–87 (2013). https://doi.org/10.1016/j.compstruct.2012.11.018

    Article  Google Scholar 

  68. Li, Q., Wu, D., Gao, W., Hui, D.: Nonlinear dynamic stability analysis of axial impact loaded structures via the nonlocal strain gradient theory. Appl. Math. Model. 115, 259–278 (2023). https://doi.org/10.1016/j.apm.2022.10.029

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper has been supported by an Australian Government Research Training Program Scholarship and Australian Research Council project DP240102559, IH210100048, IH200100010, and DP210101353.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Feng or Wei Gao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. The reduced material coefficients of GPLRP-MEE plate

$$ \tilde{Q}_{11} (z) = \left\{ \begin{gathered} \frac{{E_{c} (z)}}{{1 - \nu_{c} (z)^{2} }}\quad \quad \quad \; - h_{c} /2 \le z \le h_{c} /2 \hfill \\ Q_{11}^{f} (z) - \frac{{Q_{13}^{f} (z)^{2} }}{{Q_{33}^{f} (z)}}\; - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2\; \hfill \\ \end{gathered} \right. $$
(63)
$$ \tilde{Q}_{12} (z) = \left\{ \begin{gathered} \frac{{E_{c} (z)\nu_{c} (z)}}{{1 - \nu_{c} (z)^{2} }}\quad \quad \quad \quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ Q_{12}^{f} (z) - \frac{{Q_{13}^{f} (z)Q_{23}^{f} (z)}}{{Q_{33}^{f} (z)}}\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(64)
$$ \tilde{Q}_{22} (z) = \left\{ \begin{gathered} \frac{{E_{c} (z)}}{{1 - \nu_{c} (z)^{2} }}\quad \quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ Q_{22}^{f} (z) - \frac{{Q_{23}^{f} (z)^{2} }}{{Q_{33}^{f} (z)}}\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(65)
$$ \tilde{Q}_{44} (z) = \left\{ \begin{gathered} \frac{{E_{c} (z)}}{{2[1 + \nu_{c} (z)]}}\quad \; - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \tilde{Q}_{44} (z)\quad \quad \quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(66)
$$ \tilde{Q}_{55} (z) = \left\{ \begin{gathered} \frac{{E_{c} (z)}}{{2[1 + \nu_{c} (z)]}}\quad \; - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \tilde{Q}_{55} (z)\quad \quad \quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(67)
$$ \tilde{Q}_{66} (z) = \left\{ \begin{gathered} \frac{{E_{c} (z)}}{{2[1 + \nu_{c} (z)]}}\quad \; - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \tilde{Q}_{66} (z)\quad \quad \quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(68)
$$ \tilde{e}_{31} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \quad \quad \quad \quad \quad \;\, - h_{c} /2 \le z \le h_{c} /2 \hfill \\ e_{31}^{f} (z) - \frac{{Q_{13}^{f} (z)e_{33}^{f} (z)}}{{Q_{33}^{f} (z)}}\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(69)
$$ \tilde{e}_{32} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \quad \quad \quad \quad \quad \quad \; - h_{c} /2 \le z \le h_{c} /2\; \hfill \\ e_{32}^{f} (z) - \frac{{Q_{23}^{f} (z)e_{33}^{f} (z)}}{{Q_{33}^{f} (z)}}\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(70)
$$ \tilde{e}_{24} (z) = \left\{ \begin{gathered} 0\quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ e_{24}^{f} (z)\quad \; - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(71)
$$ \tilde{e}_{15} (z) = \left\{ \begin{gathered} 0\quad \quad \;\; - h_{c} /2 \le z \le h_{c} /2 \hfill \\ e_{15}^{f} (z)\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(72)
$$ \tilde{q}_{31} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \quad \quad \quad \quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ q_{31}^{f} (z) - \frac{{Q_{13}^{f} (z)q_{33}^{f} (z)}}{{Q_{33}^{f} (z)}}\quad \; - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(73)
$$ \tilde{q}_{32} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \quad \quad \quad \quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ q_{32}^{f} (z) - \frac{{Q_{23}^{f} (z)q_{33}^{f} (z)}}{{Q_{33}^{f} (z)}}\quad \; - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(74)
$$ \tilde{q}_{24} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \; - h_{c} /2 \le z \le h_{c} /2 \hfill \\ q_{24}^{f} (z)\quad \; - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(75)
$$ \tilde{q}_{15} (z) = \left\{ \begin{gathered} 0\quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ q_{15}^{f} (z)\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(76)
$$ \tilde{\chi }_{11} (z) = \left\{ \begin{gathered} 0\quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \chi_{11}^{f} (z)\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(77)
$$ \tilde{\chi }_{22} (z) = \left\{ \begin{gathered} 0\quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \chi_{22}^{f} (z)\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(78)
$$ \tilde{\chi }_{33} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \quad \quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \chi_{33}^{f} (z) + \frac{{e_{33}^{f} (z)^{2} }}{{Q_{33}^{f} (z)}}\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(79)
$$ \tilde{\lambda }_{11} (z) = \left\{ \begin{gathered} 0\quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \lambda_{11}^{f} (z)\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(80)
$$ \tilde{\lambda }_{22} (z) = \left\{ \begin{gathered} 0\quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \lambda_{22}^{f} (z)\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(81)
$$ \tilde{\lambda }_{33} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \quad \quad \quad \quad \quad \; - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \lambda_{33}^{f} (z) + \frac{{q_{33}^{f} (z)e_{33}^{f} (z)}}{{Q_{33}^{f} (z)}}\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(82)
$$ \tilde{\mu }_{11} (z) = \left\{ \begin{gathered} 0\quad \quad \quad - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \mu_{11}^{f} (z)\quad - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(83)
$$ \tilde{\mu }_{22} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \, - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \mu_{22}^{f} (z)\quad \, - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(84)
$$ \tilde{\mu }_{33} (z) = \left\{ \begin{gathered} 0\quad \quad \quad \quad \quad \quad \quad \; - h_{c} /2 \le z \le h_{c} /2 \hfill \\ \mu_{33}^{f} (z) + \frac{{q_{33}^{f} (z)^{2} }}{{Q_{33}^{f} (z)}}\quad \, - h/2 \le z < - h_{c} /2, \, h_{c} /2 < z \le h/2 \hfill \\ \end{gathered} \right. $$
(85)

Appendix 2. The coefficients in the expressions of the stress resultants

$$ \left( {A_{ij} ,B_{ij} ,D_{ij} ,E_{ij} ,F_{ij} ,G_{ij} ,H_{ij} } \right) = \int_{ - h/2}^{h/2} {Q_{ij} (1,z,z^{2} ,g,zg,1 - g^{\prime},g^{2} )dz} { (}i,j = 1,2,4,5,6) $$
(86)
$$ \begin{array}{*{20}c} {A_{31}^{e} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {\tilde{e}_{31} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} }{A_{32}^{e} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {\tilde{e}_{32} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} } \\ {A_{31}^{eb} = \frac{2}{h}\varphi_{0} \int_{ - h/2}^{h/2} {\tilde{e}_{31} (z)dz,} }{A_{32}^{eb} = \frac{2}{h}\varphi_{0} \int_{ - h/2}^{h/2} {\tilde{e}_{32} (z)dz,} } \\ {A_{31}^{m} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {\tilde{q}_{31} (z)\sin \left( {\frac{\pi z}{{h_{c} }}} \right)dz,} }{A_{32}^{m} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {\tilde{q}_{32} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} } \\ {A_{31}^{mb} = \frac{2}{h}\psi_{0} \int_{ - h/2}^{h/2} {\tilde{q}_{31} (z)dz,} }{A_{32}^{mb} = \frac{2}{h}\psi_{0} \int_{ - h/2}^{h/2} {\tilde{q}_{32} (z)dz} } \\ \end{array} $$
(87)
$$ \begin{array}{*{20}c} {B_{31}^{e} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {ze_{31} (z)\sin \left( {\frac{\pi z}{{h_{c} }}} \right)dz,} }{B_{32}^{e} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {ze_{32} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} } \\ {B_{31}^{eb} = \frac{2}{h}\varphi_{0} \int_{ - h/2}^{h/2} {ze_{31} (z)dz,} }{B_{32}^{eb} = \frac{2}{h}\varphi_{0} \int_{ - h/2}^{h/2} {ze_{32} (z)dz,} } \\ {B_{31}^{m} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {zq_{31} (z)\sin \left( {\frac{\pi z}{{h_{c} }}} \right)dz,} }{B_{32}^{m} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {zq_{32} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} } \\ {B_{31}^{mb} = \frac{2}{h}\psi_{0} \int_{ - h/2}^{h/2} {zq_{31} (z)dz,} }{B_{32}^{mb} = \frac{2}{h}\psi_{0} \int_{ - h/2}^{h/2} {zq_{32} (z)dz} } \\ \end{array} $$
(88)
$$ \begin{array}{*{20}c} {E_{31}^{e} = \frac{\pi }{{h_{c} }}\int_{ - h/2}^{h/2} {g(z)\tilde{e}_{31} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} }{E_{32}^{e} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {g(z)\tilde{e}_{32} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} } \\ {E_{31}^{eb} = \frac{2}{h}\varphi_{0} \int_{ - h/2}^{h/2} {g(z)\tilde{e}_{31} (z)dz,} }{E_{32}^{eb} = \frac{2}{h}\varphi_{0} \int_{ - h/2}^{h/2} {g(z)\tilde{e}_{32} (z)dz,} } \\ {E_{31}^{m} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {g(z)\tilde{q}_{31} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} }{E_{32}^{m} = \frac{\pi }{h}\int_{ - h/2}^{h/2} {g(z)\tilde{q}_{32} (z)\sin \left( {\frac{\pi z}{h}} \right)dz,} } \\ {E_{31}^{mb} = \frac{2}{h}\psi_{0} \int_{ - h/2}^{h/2} {g(z)\tilde{q}_{31} (z)dz,} }{E_{32}^{mb} = \frac{2}{h}\psi_{0} \int_{ - h/2}^{h/2} {g(z)\tilde{q}_{32} (z)dz,} } \\ \end{array} $$
(89)
$$ \begin{gathered} G_{24}^{e} = - \int_{ - h/2}^{h/2} {\left( {1 - g^{\prime } } \right)\tilde{e}_{24} \cos \left( {\frac{\pi z}{h}} \right)dz} \hfill \\ G_{24}^{m} = - \int_{ - h/2}^{h/2} {\left( {1 - g^{\prime } } \right)\tilde{q}_{24} \cos \left( {\frac{\pi z}{h}} \right)dz} \hfill \\ G_{15}^{e} = - \int_{ - h/2}^{h/2} {\left( {1 - g^{\prime } } \right)\tilde{e}_{15} \cos \left( {\frac{\pi z}{h}} \right)dz} \hfill \\ G_{15}^{m} = - \int_{ - h/2}^{h/2} {\left( {1 - g^{\prime } } \right)\tilde{q}_{15} \cos \left( {\frac{\pi z}{h}} \right)dz} \hfill \\ \end{gathered} $$
(90)

Appendix 3. The coefficients in the expressions of the membrane strains

$$ \begin{gathered} \begin{array}{*{20}c} {A_{11}^{*} = \frac{{A_{22} }}{{A_{11} A_{22} - A_{12}^{2} }},} & {A_{12}^{*} = - \frac{{A_{12} }}{{A_{11} A_{22} - A_{12}^{2} }},} \\ {A_{13}^{*} = \frac{{A_{12} B_{12} - A_{22} B_{11} }}{{A_{11} A_{22} - A_{12}^{2} }},} & {A_{14}^{*} = \frac{{A_{12} B_{22} - A_{22} B_{12} }}{{A_{11} A_{22} - A_{12}^{2} }},} \\ {A_{15}^{*} = \frac{{A_{12} E_{12} - A_{22} E_{11} }}{{A_{11} A_{22} - A_{12}^{2} }},} & {A_{16}^{*} = \frac{{A_{12} E_{22} - A_{22} E_{12} }}{{A_{11} A_{22} - A_{12}^{2} }},} \\ {A_{17}^{*} = \frac{{A_{12} A_{32}^{e} - A_{22} A_{31}^{e} }}{{A_{11} A_{22} - A_{12}^{2} }},} & {A_{18}^{*} = \frac{{A_{12} A_{32}^{m} - A_{22} A_{31}^{m} }}{{A_{11} A_{22} - A_{12}^{2} }},} \\ \end{array} \hfill \\ A_{19}^{*} = \frac{{A_{12} A_{32}^{eb} - A_{22} A_{31}^{eb} + A_{12} A_{32}^{mb} - A_{22} A_{31}^{mb} }}{{A_{11} A_{22} - A_{12}^{2} }} \hfill \\ \end{gathered} $$
(91)
$$ \begin{array}{*{20}l} {\begin{array}{*{20}l} {A_{21}^{*} = - \frac{{A_{12} }}{{A_{11} A_{22} - A_{12}^{2} }},} \hfill & {A_{22}^{*} = \frac{{A_{11} }}{{A_{11} A_{22} - A_{12}^{2} }},} \hfill \\ {A_{23}^{*} = \frac{{A_{12} B_{11} - A_{11} B_{12} }}{{A_{11} A_{22} - A_{12}^{2} }},} \hfill & {A_{24}^{*} = \frac{{A_{12} B_{12} - A_{11} B_{22} }}{{A_{11} A_{22} - A_{12}^{2} }},} \hfill \\ {A_{25}^{*} = \frac{{A_{12} E_{11} - A_{11} E_{12} }}{{A_{11} A_{22} - A_{12}^{2} }},} \hfill & {A_{26}^{*} = \frac{{A_{12} E_{12} - A_{11} E_{22} }}{{A_{11} A_{22} - A_{12}^{2} }},} \hfill \\ {A_{27}^{*} = \frac{{A_{12} A_{31}^{e} - A_{11} A_{32}^{e} }}{{A_{11} A_{22} - A_{12}^{2} }},} \hfill & {A_{28}^{*} = \frac{{A_{12} A_{31}^{m} - A_{11} A_{32}^{m} }}{{A_{11} A_{22} - A_{12}^{2} }},} \hfill \\ \end{array} } \hfill \\ {A_{29}^{*} = \frac{{A_{12} A_{31}^{eb} - A_{11} A_{32}^{eb} - A_{11} A_{32}^{mb} + A_{12} A_{31}^{mb} }}{{A_{11} A_{22} - A_{12}^{2} }}} \hfill \\ \end{array} $$
(92)
$$ A_{31}^{*} = \frac{1}{{A_{66} }},A_{32}^{*} = - \frac{{B_{66} }}{{A_{66} }},A_{33}^{*} = - \frac{{E_{66} }}{{A_{66} }} $$
(93)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, Q., Feng, Y. et al. Nonlinear dynamic analysis of the graphene platelets reinforced porous plate with magneto-electro-elastic sheets subjected to impact load. Nonlinear Dyn 112, 1661–1690 (2024). https://doi.org/10.1007/s11071-023-09093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09093-3

Keywords

Navigation