Skip to main content
Log in

General soliton, line breather and (semi-)rational solutions for the nonlocal long-wave-short-wave resonance interaction equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, the general solutions of the nonlocal long-wave-short-wave resonance interaction (LSRI) equation with nonzero boundary conditions are investigated by using the Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy reduction method. We discussed the cases where N is odd and even, which have a significant impact on the background wave. When N is odd, the solutions are located in the periodic background, while it is on the constant background when N is even. Different forms of solutions are discussed in detail, including the general soliton, line breather and (semi-)rational solutions. For these solutions of the nonlocal LSRI equation, we have obtained a variety of rich and interesting images are obtained through theoretical and graphical analysis, and most of them cannot correspond to the local equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schördinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    MathSciNet  Google Scholar 

  2. Wang, L., Li, M., Qi, F.H., Xu, T.: Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas. Phys. Plasmas 22, 032308 (2015)

    Google Scholar 

  3. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  4. Sun, B., Wazwaz, A.M.: Interaction of lumps and dark solitons in the Mel’nikov equation. Nonlinear Dyn. 92, 1–11 (2018)

    Google Scholar 

  5. Yan, X.W., Tian, S.F., Dong, M.J., Zhang, T.T.: Rogue waves and their dynamics on bright-dark soliton background of the coupled higher order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 88(7), 074004 (2019)

    Google Scholar 

  6. Yan, X.W., Tian, S.F., Dong, M.J., Zou, L.: Bäcklund transformation, rogue wave solutions and interaction phenomena for a-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dyn. 92, 709–720 (2018)

    Google Scholar 

  7. Mihalache, D.: Multidimensional localized structures in optics and Bose-Einstein condensates: a selection of recent studies. Rom. J. Phys. 59, 295–312 (2014)

    Google Scholar 

  8. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G.: Bose-Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 251–253 (2015)

    Google Scholar 

  9. Malomed, B., Torner, L., Wise, F., Mihalache, D.: On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J. Phys. B At. Mol. Opt. Phys. 49, 17 (2016)

    Google Scholar 

  10. Li, Z.Q., Tian, S.F., Yang, J.J.: On the soliton resolution and the asymptotic stability of N-solition solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions. Adv. Math. 409, 108639 (2022)

    Google Scholar 

  11. Kevrekidis, P.G., Frantzeskakis, D.J.: Solitons in coupled nonlinear Schrödinger models: a survey of recent developments. Rev. Phys. 1, 140–153 (2016)

    Google Scholar 

  12. Kivshar, Y.S., Agrawal, G.P.: Optical solitons: from fibers to photonic crystals, San Diego. Academic Press, CA (2003)

  13. Akhmediev, N., Ankiewicz, A.: Solitons: nonlinear pulses and beams. Chapman Hall, London (1997)

    Google Scholar 

  14. Scott, A.C.: Nonlinear science: emergence and dynamics of coherent structures. Oxford University Press, Oxford (1999)

    Google Scholar 

  15. Craik, A.D.D.: Wave interaction and fluid flows. Cambridge University Press, New York (1988)

    Google Scholar 

  16. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

    Google Scholar 

  17. Benny, D.J.: A general theory for interactions between short and long waves. Stud. Appl. Math. 56, 81–94 (1977)

    MathSciNet  Google Scholar 

  18. Yajima, N., Oikawa, M.: Formation and interaction of sonic-Langmuir solitons: inverse scattering method. Prog. Theor. Phys. 56, 1719–1739 (1976)

    MathSciNet  Google Scholar 

  19. Ma, Y.C.: Complete solution of the long wave-short wave resonance equations. Stud. Appl. Math. 59, 201–221 (1978)

    MathSciNet  Google Scholar 

  20. Djordjevic, V.D., Redekopp, L.G.: On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79, 703–714 (1977)

    MathSciNet  Google Scholar 

  21. Dodd, R.K., Morris, H.C., Eilbeck, J.C., Gibbon, J.D.: Soliton and nonlinear wave equations. Academic Press, London (1982)

    Google Scholar 

  22. Rao, J.G., Mihalache, D., He, J.S., Zhou, F.: Degenerate and non-degenerate vector solitons and their interactions in the two-component long-wave-short-wave model of Newell type. Chaos Solitons Fractals 166, 112963 (2023)

    MathSciNet  Google Scholar 

  23. Li, R.M., Geng, X.G.: Rogue waves and breathers of the derivative Yajima-Oikawa long wave-short wave equations on theta-function backgrounds. J. Math. Anal. Appl. 527, 127399 (2023)

    MathSciNet  Google Scholar 

  24. Kivshar, Y.S.: Stable vector solitons composed of bright and dark pulses. Opt. Lett. 17, 1322 (1992)

    Google Scholar 

  25. Chowdhury, A., Tataronis, J.A.: Long wave-short wave resonance in nonlinear negative refractive index media. Phys. Rev. Lett. 100, 153905 (2008)

    Google Scholar 

  26. Nistazakis, H.E., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Carretero-Gonzàlez, R.: Bright-dark soliton complexes in spinor Bose-Einstein condensates. Phys. Rev. A 77, 033612 (2008)

    Google Scholar 

  27. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Google Scholar 

  28. Sarma, A.K., Miri, M.A., Musslimani, Z.H., Christodoulides, D.N.: Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities. Phys. Rev. E 89, 052918 (2014)

    Google Scholar 

  29. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42, 699–708 (2017)

    MathSciNet  Google Scholar 

  30. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    MathSciNet  Google Scholar 

  31. Wu, J.P.: A novel reduction approach to obtain \(N\)-soliton solutions of a nonlocal nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn. 106, 775–781 (2021)

  32. Wang, X.B., Tian, S.F.: Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation. Theoret. Math. Phys. 212(3), 1193–1210 (2022)

    MathSciNet  Google Scholar 

  33. Liu, Y.K., Li, B.: Dynamics of solitons and breathers on a periodic waves background in the nonlocal Mel’nikov equation. Nonlinear Dyn. 100, 3717–3731 (2020)

    Google Scholar 

  34. Zhu, J.Y., Chen, Y.: Data-driven solutions and parameter discovery of the nonlocal mKdV equation via deep learning method. Nonlinear Dyn. 111, 8397–8417 (2023)

    Google Scholar 

  35. Wang, X.B., Tian, S.F.: Exotic vector freak waves in the nonlocal nonlinear Schrödinger equation. Phys. D 442, 133528 (2022)

    Google Scholar 

  36. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)

    MathSciNet  Google Scholar 

  37. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey-Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    MathSciNet  Google Scholar 

  38. Gerdjikov, V.S., Saxena, A.: Complete integrability of nonlocal nonlinear Schrödinger equation. J. Math. Phys. 58, 013502 (2017)

    MathSciNet  Google Scholar 

  39. Yang, B., Yang, J.K.: Transformations between Nonlocal and Local Integrable Equations. Stud. Appl. Math. 140, 1–24 (2018)

    MathSciNet  Google Scholar 

  40. Cao, Y.L., Tian, H., Wazwaz, A.M., Liu, J.G.: Interaction of wave structure in the \(\cal{PT} \) -symmetric \((3+1)\)-dimensional nonlocal Mel’nikov equation and their applications. Z. Angew. Math. Phys. 74(2), 1–16 (2023)

    MathSciNet  Google Scholar 

  41. Xu, T., Chen, Y., Li, M., Meng, D.X.: General stationary solutions of the nonlocal nonlinear Schrödinger equation and their relevance to the \(\cal{PT} \)-symmetric system. Chaos 29, 123124 (2019)

    MathSciNet  Google Scholar 

  42. Ablowitz, J., Luo, X.D., Musslimani, H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)

    MathSciNet  Google Scholar 

  43. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrdinger equation for a family of step-like initial data. Commun. Math. Phys. 382, 87–121 (2021)

    Google Scholar 

  44. Zhou, H.J., Chen, Y.: Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation. Nonlinear Dyn. 106, 3437–3451 (2021)

    Google Scholar 

  45. Wu, X., Tian, S.F.: On long-time asymptotics to the nonlocal short pulse equation with the Schwartz-type initial data: without solitons. Phys. D 448, 133733 (2023)

    MathSciNet  Google Scholar 

  46. Sun, B.N.: General soliton solutions to a nonlocal long-wave-short-wave resonance interaction equation with nonzero boundary condition. Nonlinear Dyn. 92, 1369–1377 (2018)

    Google Scholar 

  47. Li, M., Fu, H.M., Wu, C.F.: General soliton and (semi-)rational solutions to the nonlocal Mel’nikov equation on the periodic background. Stud. Appl. Math. 145, 97–136 (2020)

  48. Sheng, H.H., Yu, G.F.: Solitons, breathers and rational solutions for a (2+1)-dimensional dispersive long wave system. Phys. D 432, 133140 (2022)

    MathSciNet  Google Scholar 

  49. Huang, Q.F., Ruan, C.Z., Huang, J.X.: Soliton solutions to a (2+1)-dimensional nonlocal NLS equation, (2021). https://doi.org/10.21203/rs.3.rs-196261/v1

  50. Chen, J., Feng, B.F., Maruno, K.I., Ohta, Y.: The derivative Yajima-Oikawa system: bright, dark soliton and breather solutions. Stud. Appl. Math. 141, 145–185 (2018)

    MathSciNet  Google Scholar 

  51. Yang, B., Chen, J.C., Yang, J.K.: Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear Sci. 30, 3027–3056 (2020)

    MathSciNet  Google Scholar 

  52. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)

  53. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions.

Funding

The work of X. Wu was supported by the China Postdoctoral Science Foundation (No. 2022M710969) and National Science Foundation of China (No.12101159). The work of Y. Chen was supported by the Fundamental Research Funds for the Central Universities (No. 2022FRFK060015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Chen, Y. & Yan, XW. General soliton, line breather and (semi-)rational solutions for the nonlocal long-wave-short-wave resonance interaction equation. Nonlinear Dyn 112, 661–679 (2024). https://doi.org/10.1007/s11071-023-09068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09068-4

Keywords

Navigation