Skip to main content
Log in

An investigation on cage instability based on dynamic model considering guiding surface three-dimensional contact

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The cage instability significantly affects the bearing dynamic behavior and weakens the rotating system performance. To predict this instability, however, a bearing dynamic model with detailed consideration of the interface and velocity between the cage and the other components is still lacking. To this end, this paper proposes a new bearing dynamic model that places all moving components in the inertial coordinate frame. The geometrical interactions and velocities between the cage and other components are considered in detail. The slicing method is employed to derive the interaction between the deflected cage and the guiding ring. The influence mechanism of two typical operating conditions on cage dynamic behavior is investigated from the perspective of ball/pocket collisions. On this basis, new indictors are defined to study the thresholds for operating condition leading to cage instability. Attempts are further made to improve cage stability by optimizing bearing contact angle. The results show that heavy radial loads significantly enhance the cage instability and the shock exerted on the cage. Interestingly, the smaller the contact angle, the more pronounced the improvement in the cage dynamic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  1. Kingsbury, E.: Torque variations in instrument ball bearings. ASLE Trans. 8, 435–441 (1965). https://doi.org/10.1080/05698196508972113

    Article  Google Scholar 

  2. Adams, G., Jones, J.: The effect of retainer geometry on the stability of ball bearing. ASLE Trans. 19(2), 95–107 (1976). https://doi.org/10.1080/05698197608982783

    Article  Google Scholar 

  3. Nogi, T., Maniwa, K., Matsuoka, N.: A dynamic analysis of cage instability in ball bearings. J. Tribol.140. https://doi.org/10.1115/1.4036451 (2018)

  4. Cocks, M., Tallian, T.: Sliding contacts in rolling bearings. ASLE Trans. 14, 32–40 (1971). https://doi.org/10.1080/05698197108983225

    Article  Google Scholar 

  5. Shi, Z., Liu, J.: Dynamic simulation of a planet roller bearing considering the cage bridge crack. Eng. Fail. Anal. 131, 105849 (2022). https://doi.org/10.1016/j.engfailanal.2021.105849

    Article  Google Scholar 

  6. Walters, C.: The dynamics of ball bearings. J. Tribol. 93, 1–10 (1971). https://doi.org/10.1115/1.3451516

    Article  Google Scholar 

  7. Kannel, J., Bupara, S.: A simplified model of cage motion in angular contact bearings operating in the EHD lubrication regime. ASME. J. Lubrication Technol. 100(3), 395–403 (1978). https://doi.org/10.1115/1.3453196

    Article  Google Scholar 

  8. Gupta, P.: Dynamics of rolling-element bearings part III: ball bearing analysis. J. Tribol. 101, 312–318 (1979). https://doi.org/10.1115/1.3453363

    Article  Google Scholar 

  9. Gupta, P.: Dynamics of rolling-element bearings—Part IV: ball bearing results. ASME. J. Lubrication Technol. 101(3), 319–326 (1979). https://doi.org/10.1115/1.3453364

    Article  Google Scholar 

  10. Stacke, E., Fritzson, D.: Dynamic behavior of rolling bearings: simulations and experiments. P I Mech Eng K-J Mul. 215(6), 499–508 (2001). https://doi.org/10.1243/1350650011543754

    Article  Google Scholar 

  11. Ghaisas, N., Wassgren, C., Sadeghi, F.: Cage instabilities in cylindrical roller bearings. ASME. J. Tribol 126(4), 681–689 (2004). https://doi.org/10.1115/1.1792674

    Article  Google Scholar 

  12. Wang, Y., Wang, W., Zhang, S., et al.: Investigation of skidding in angular contact ball bearings under high speed. Tribol. Int. 92, 404–417 (2015). https://doi.org/10.1016/j.triboint.2015.07.021

    Article  Google Scholar 

  13. Meeks, C.: The dynamics of ball separators in ball bearings- part I: analysis. ASLE Trans 28, 277–287 (1985). https://doi.org/10.1080/05698198508981622

    Article  Google Scholar 

  14. Meeks, C.: The dynamics of ball separators in ball bearings- part II: results of optimization study. ASLE Trans 28, 288–295 (1985). https://doi.org/10.1080/05698198508981623

    Article  Google Scholar 

  15. Jones, A.: Ball motion and sliding friction in ball bearings. J. Basic Eng. 81, 1–12 (1959). https://doi.org/10.1115/1.4008346

    Article  Google Scholar 

  16. Harris, T., Mindel, M.: Rolling element bearing dynamics. Wear 23, 311–337 (1973). https://doi.org/10.1016/0043-1648(73)90020-3

    Article  Google Scholar 

  17. Han, Q., Li, X., Chu, F.: Skidding behavior of cylindrical roller bearings under time-variable load conditions. Int. J. Mech. Sci. 135, 203–214 (2018). https://doi.org/10.1016/j.ijmecsci.2017.11.013

    Article  Google Scholar 

  18. Han, Q., Chu, F.: Nonlinear dynamic model for skidding behavior of angular contact ball bearings. J. Sound Vib. 354, 219–235 (2015). https://doi.org/10.1016/j.jsv.2015.06.008

    Article  Google Scholar 

  19. Gao, S., Chatterton, S., Naldi, L., et al.: Ball bearing skidding and over-skidding in large-scale angular contact ball bearings: Nonlinear dynamic model with thermal effects and experimental results. Mech. Syst. Signal Process. 147, 107120 (2021). https://doi.org/10.1016/j.ymssp.2020.107120

    Article  Google Scholar 

  20. Gao, S., Han, Q., Pennacchi, P.: Dynamic, thermal, and vibrational analysis of ball bearings with over-skidding behavior. Friction (2022). https://doi.org/10.1007/s40544-022-0622-9

    Article  Google Scholar 

  21. Gupta, P.: Advanced Dynamics of Rolling Elements. Springer: New York. https://doi.org/10.1007/978-1-4612-5276-4 (1984)

  22. Wang, Y., Wang, W., Zhao, Z.: Effect of race conformities in angular contact ball bearing. Tribol. Int. 104, 109–120 (2016). https://doi.org/10.1016/j.triboint.2016.08.034

    Article  Google Scholar 

  23. Liu, Y., Wang, W., Qing, T., et al.: The effect of lubricant temperature on dynamic behavior in angular contact ball bearings. Mech. Mach. Theory 149, 103832 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103832

    Article  Google Scholar 

  24. Liu, Y., Wang, W., Liang, H., et al.: Nonlinear dynamic behavior of angular contact ball bearings under microgravity and gravity. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105782

    Article  Google Scholar 

  25. Wen, B., Ren, H., Zhang, H., et al.: Experimental investigation of cage motions in an angular contact ball bearing. Proc Inst Mech Eng Part J J Eng Tribol 231, 1041–1055 (2017). https://doi.org/10.1177/1350650116689457

    Article  Google Scholar 

  26. Wen, B., Wang, M., Zhou, X., et al.: Multi-harmonic motions of bearing cage affected by rotor unbalance. Proc Inst Mech Eng Part C J Mech Eng Sci 232, 2610–2625 (2018). https://doi.org/10.1177/0954406217722380

    Article  Google Scholar 

  27. Niu, L., Cao, H., He, Z., et al.: An investigation on the occurrence of stable cage whirl motions in ball bearings based on dynamic simulations. Tribol. Int. 103, 12–24 (2016). https://doi.org/10.1016/j.triboint.2016.06.026

    Article  Google Scholar 

  28. Ma, S., Li, W., Yan, K., et al.: A study on the dynamic contact feature of four-contact-point ball bearing. Mech. Syst. Signal Process. 174, 109111 (2022). https://doi.org/10.1016/j.ymssp.2022.109111

    Article  Google Scholar 

  29. Ma, S., He, G., Yan, K., et al.: International Journal of Mechanical Sciences Structural optimization of ball bearings with three-point contact at. Int. J. Mech. Sci. 229, 107494 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107494

    Article  Google Scholar 

  30. Deng, S., Chang, H., Qian, D., et al.: Nonlinear dynamic model of ball bearings with elastohydrodynamic lubrication and cage whirl motion, influences of structural sizes, and materials of cage. vol. 1. Springer Netherlands; 2022. https://doi.org/10.1007/s11071-022-07683-1

  31. Deng, S., Zhu, X., Qian, D., et al.: Nonlinear dynamic correlation between balls, cage and bearing rings of angular contact ball bearings at different number of balls and groove curvature radii. vol. 0123456789. Springer Netherlands; 2022. https://doi.org/10.1007/s11071-022-08018-w

  32. Gao, S., Chatterton, S., Pennacchi, P., et al.: Skidding and cage whirling of angular contact ball bearings: kinematic-hertzian contact-thermal-elasto-hydrodynamic model with thermal expansion and experimental validation. Mech. Syst. Signal Process. 166, 108427 (2022). https://doi.org/10.1016/j.ymssp.2021.108427

    Article  Google Scholar 

  33. Gao, S., Han, Q., Zhou, N., et al.: Experimental and theoretical approaches for determining cage motion dynamic characteristics of angular contact ball bearings considering whirling and overall skidding behaviors. Mech. Syst. Signal Process.168. https://doi.org/10.1016/j.ymssp.2021.108704 (2022)

  34. Gao, S., Han, Q., Zhou, N., et al.: Dynamic and wear characteristics of self-lubricating bearing cage: effects of cage pocket shape. Nonlinear Dyn. 110, 177–200 (2022). https://doi.org/10.1007/s11071-022-07611-3

    Article  Google Scholar 

  35. Zhang, W., Deng, S., Chen, G., et al.: Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing. Chin. J. Aeronaut. 30, 827–835 (2017). https://doi.org/10.1016/j.cja.2016.08.019

    Article  Google Scholar 

  36. Zhang, W., Deng, S., Chen, G., et al.: Influence of lubricant traction coefficient on cage’s nonlinear dynamic behavior in high-speed cylindrical roller bearing. J. Tribol. (2017). https://doi.org/10.1115/1.4036274

    Article  Google Scholar 

  37. Zhang, W., Deng, S., Chen, G., et al.: Study on the impact of roller convexity excursion of high-speed cylindrical roller bearing on roller’s dynamic characteristics. Mech. Mach. Theory 103, 21–39 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.04.010

    Article  Google Scholar 

  38. Cui, Y., Deng, S., Zhang, W., et al.: The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics. Mech. Mach. Theory 118, 65–83 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.08.001

    Article  Google Scholar 

  39. Stacke, E., Fritzson, D., Nordling, P.: BEAST-a rolling bearing simulation tool. P I Mech Eng K-J Mul 213(2), 63–71 (1999). https://doi.org/10.1243/1464419991544063

    Article  Google Scholar 

  40. Aramaki, H.: Rolling bearing analysis program package BRAIN. Motion Control 3, 15–24 (1997)

    Google Scholar 

  41. Vlasenko, D., Hahn, B.: Modeling of elastic cages in the rolling bearing multi-body tool CABA3D. Multibody dynamics 2019. In: Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics. Springer, 2020: 96–103. https://doi.org/10.1007/978-3-030-23132-3_12

  42. Houpert, L.: CAGEDYN: a contribution to roller bearing dynamics calculations part I: basic tribology concepts. Tribol T 53(1), 1–9 (2010). https://doi.org/10.1080/10402000903132093

    Article  Google Scholar 

  43. Weinzapfel, N., Sadeghi, F.: A discrete element approach for modeling cage flexibility in ball bearing dynamics simulations. ASME. J. Tribol 131(2), 021102 (2009). https://doi.org/10.1115/1.3063817

    Article  Google Scholar 

  44. Ashtekar, A., Sadeghi, F.: A new approach for including cage flexibility in dynamic bearing models by using combined explicit finite and discrete element methods. J. Tribol. 134, 1–12 (2012). https://doi.org/10.1115/1.4007348

    Article  Google Scholar 

  45. Liu, Y., Chen, Z., Tang, L., et al.: Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions. Mech. Syst. Signal Process. 150, 107257 (2021). https://doi.org/10.1016/j.ymssp.2020.107257

    Article  Google Scholar 

  46. Li, H., Li, H., Liu, Y., et al.: Dynamic characteristics of ball bearing with flexible cage lintel and wear. Eng. Fail. Anal. 117, 104956 (2020). https://doi.org/10.1016/j.engfailanal.2020.104956

    Article  Google Scholar 

  47. Zhao, D., Hong, J., Yan, K., et al.: Dynamic interaction between the rolling element and cage of rolling bearing considering cage flexibility and clearance. Mech. Mach. Theory 174, 104905 (2022). https://doi.org/10.1016/j.mechmachtheory.2022.104905

    Article  Google Scholar 

  48. Seiler, K., Stadler, M., Tremmel, S., et al.: Modeling of cage guidance in a rolling bearing multi-body dynamic simulation program for a power efficient bearing design. In: STLE Annul Meeting and Exhibition (2014)

  49. Katrin, S., Stadler, M., Tremmel, S., et al.: Modeling of the cage guide for rolling body dynamics simulation program: a contribution to reliable bearing design. Tribol. Schmierungstech. 60, 29–36 (2013)

    Google Scholar 

  50. Schwarz, S., Grillenberger, H., Tremmel, S., et al.: Prediction of rolling bearing cage dynamics using dynamic simulations and machine learning algorithms. Tribol. Trans. 65(2), 225–241 (2021). https://doi.org/10.1080/10402004.2021.1934618

    Article  Google Scholar 

  51. Schwarz, S., Grillenberger, H., Graf-Foller, O., et al.: Machine learning methods for predicting cage performance criteria in an angular contact ball bearing. Lubricants 10(2), 25 (2022). https://doi.org/10.3390/lubricants10020025

    Article  Google Scholar 

  52. Gupta, P.: Modeling of instabilities induced by cage clearances in ball bearings. Tribol. Trans. 34, 93–99 (1991). https://doi.org/10.1080/10402009108982014

    Article  Google Scholar 

  53. Choe, B., Kwak, W., Jeon, D., et al.: Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part II: effects of cage mass imbalance. Mech. Syst. Signal Process. 116, 25–39 (2019). https://doi.org/10.1016/j.ymssp.2018.06.034

    Article  Google Scholar 

  54. Choe, B., Lee, J., Jeon, D., et al.: Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part I: effects of cage guidance and pocket clearances. Mech. Syst. Signal Process. 115, 545–569 (2019). https://doi.org/10.1016/j.ymssp.2018.06.018

    Article  Google Scholar 

  55. Liu, X., Deng, S., Teng, H.: Dynamic stability analysis of cages in high-speed oil-lubricated angular contact ball bearings. Trans. Tianjin Univ. 17, 20–27 (2011). https://doi.org/10.1007/s12209-011-1487-6

    Article  Google Scholar 

  56. Chen, S., Chen, X., Shuai, Q., et al.: Effects of cage pocket shapes on dynamics of angular contact ball bearings. Tribol Online 15, 343–355 (2020). https://doi.org/10.2474/TROL.15.343

    Article  Google Scholar 

  57. Tu, W., Luo, Y., Yu, W.: Dynamic interactions between the rolling element and the cage in rolling bearing under rotational speed fluctuation conditions. J. Tribol. 141, 1–9 (2019). https://doi.org/10.1115/1.4044082

    Article  Google Scholar 

  58. Grillenberger, H., Hahn, B., Binderszewsky, J., et al.: Simulation von elastischen Käfiginstabilitäten in Wälzlagern. VDI Berichte 2257, 365–376 (2015)

    Google Scholar 

  59. Kingsbury, E., Walker, R.: Motions of an unstable retainer in an instrument ball bearing. J. Tribol. 116(2), 202–208 (1994). https://doi.org/10.1115/1.2927197

    Article  Google Scholar 

  60. Ma, S., Zhang, X., Yan, K., et al.: A study on bearing dynamic features under the condition of multiball-cage collision. Lubricants 10(1), 9 (2022). https://doi.org/10.3390/lubricants10010009

    Article  Google Scholar 

  61. Fang, B., Zhang, J., Hong, J., et al.: Research on the nonlinear stiffness characteristics of double−row angular contact ball bearings under different working conditions. Lubricants. 11(2), 44 (2023). https://doi.org/10.3390/lubricants11020044

    Article  Google Scholar 

  62. Ma, S., Yin, Y., Yan, K., et al.: A real-time coupling model of bearing-rotor system based on semi-flexible body element. Int. J. Mech. Sci. 245, 108098 (2023). https://doi.org/10.1016/j.ijmecsci.2022.108098

    Article  Google Scholar 

  63. Gupta, P., Gibson, H.: Real-time dynamics modeling of cryogenic ball bearings with thermal coupling. J. Tribol. 143, 1–13 (2021). https://doi.org/10.1115/1.4047582

    Article  Google Scholar 

  64. Li, Q., Chen, X., Zhang, T., et al.: Experimental research on cage dynamic characteristics of angular contact ball bearing. Mech Ind 20, 204 (2019). https://doi.org/10.1051/meca/2019007

    Article  Google Scholar 

  65. Gao S, Han Q, Zhou N, et al. Stability and skidding behavior of spacecraft porous oil-containing polyimide cages based on high-speed photography technology. Tribol Int 165. https://doi.org/10.1016/j.triboint.2021.107294 (2022)

  66. Cui, Y., Deng, S., Niu, R., et al.: Vibration effect analysis of roller dynamic unbalance on the cage of high-speed cylindrical roller bearing. J. Sound Vib. 434, 314–335 (2018). https://doi.org/10.1016/j.jsv.2018.08.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Outstanding Youth Science Fund Project of National Science Foundation of China (52022077).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Hertzian point-contact theory

Appendix: Hertzian point-contact theory

The Hertzian deflection coefficient for point contact can be defined as:

$$ K = \pi \kappa E^{\prime } \left( {\frac{{{\text{E}}\Sigma \rho }}{{4.5{\text{F}}^{3} }}} \right)^{0.5} $$
(64)

The contact half-width of the semi-major axis is given as follows:

$$ a = \left( {\frac{{3\kappa^{2} {\text{E}}Q}}{{\pi E^{\prime } \Sigma \rho }}} \right)^{\frac{1}{3}} $$
(65)

The contact half-width of the semi-minor axis is given as follows:

$$ b = \left( {\frac{{3{\text{E}}Q}}{{\pi \kappa E^{\prime } \Sigma \rho }}} \right)^{\frac{1}{3}} $$
(66)

The maximum contact stress in the contact ellipse can be expressed as:

$$ p_{0} = \frac{2Q}{{\pi ab}} $$
(67)

The contact stress at any point in the contact ellipse is represented as:

$$ p{}_{{\left( {x,y} \right)}} = p_{0} \sqrt {1 - \left( \frac{x}{a} \right)^{2} - \left( \frac{y}{b} \right)^{2} } $$
(68)

where

$$ \Sigma \rho = \rho_{{{\text{I1}}}} + \rho_{{{\text{I2}}}} + \rho_{{{\text{II1}}}} + \rho_{{{\text{II}}2}} $$
(69)
$$ E^{\prime} = \left( {\frac{{1 - \nu_{1}^{2} }}{{E_{1} }} + \frac{{1 - \nu_{2}^{2} }}{{E_{2} }}} \right) $$
(70)
$$ {\text{F = }}\int_{0}^{{\frac{\pi }{2}}} {\left[ {1 - \left( {1 - \frac{1}{{\kappa^{2} }}} \right)\sin^{2} \phi } \right]}^{{ - \frac{1}{2}}} d\phi $$
(71)
$$ {\text{E = }}\int_{0}^{{\frac{\pi }{2}}} {\left[ {1 - \left( {1 - \frac{1}{{\kappa^{2} }}} \right)\sin^{2} \phi } \right]}^{\frac{1}{2}} d\phi $$
(72)

and κ denotes the ratio of semi-major axis to semi-minor axis, which can be obtained by solving following formula.

$$ \frac{{\left( {\kappa^{2} + 1} \right){\text{E}} - 2{\text{F}}}}{{\left( {\kappa^{2} - 1} \right){\text{E}}}} = \frac{{\left| {\rho_{{{\text{I1}}}} - \rho_{{{\text{II2}}}} } \right| + \left| {\rho_{{{\text{II1}}}} - \rho_{{{\text{II}}2}} } \right|}}{\Sigma \rho } $$
(73)

ρ is the curvature of the contact body surface. v and E represent the material-related coefficients.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Yan, K., Liu, Y. et al. An investigation on cage instability based on dynamic model considering guiding surface three-dimensional contact. Nonlinear Dyn 112, 289–315 (2024). https://doi.org/10.1007/s11071-023-09049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09049-7

Keywords

Navigation